
Daniel Jackson · Autodesk · Woodinville, WA · Dec 3-5, 2024

product families
& catalogs

concepts at Palantir (2023)

challenges they were facing
issues not attributable to modules or even products
inconsistent UX across products for similar functions
“conceptual entropy”: growing complexity

what they did
integrated concepts into company knowledge base
leaders bootstrapped by writing initial concepts
exploiting existing documents
now 200 concepts recorded, 280 regular users

concepts go beyond engineering
concepts used in marketing; IP lawyers interested too

concepts empower PMs
new career path: PMs given ownership of concepts

anticipated impacts
cataloging key assets & avoiding rework
aligning concepts across products, reuse
aligning marketing/design/engineering

Wilczynski et al, arxiv.org/abs/2304.14975

a history of
programming

in 5 minutes

the origins of the problem

T1

T11

divide and conquer
break task T1 into subtasks T11, T12
implement as modules

a new problem: coupling
if T11 fails, T1 will fail too
to understand T1, you need to understand T11
if you change T11, may need to change T1 too

much of software engineering
is focusing on mitigating this problem

T12

advance #1: specifications as firewalls

T1

T11

change the dependencies
T1 no longer depends on T11 and T12
instead it depends on the specs S11 and S12

modular reasoning
show that T1 satisfies S1 assuming S11 and S12
show that T11 satisfies S11, T12 satisfies S12

T12

S12S11

S1

in 1975, this was controversial!

David Parnas was right, and I was wrong about
information hiding. I am now convinced that
information hiding, today often embodied in

object programming, is the only way of raising
the level of software design.

Fred Brooks, Anniversary edition of MMM, 1995

advance #2: OOP and dynamic configuration

T1

T11

since T1 only needs an S11 and an S12
don’t need T11 and T12 in particular
can avoid naming T11 and T12 in T1
pass them in at runtime instead

a new problem
can no longer find dependencies statically

T12

S12S11

S1

this is how “gang of four” patterns work

advance #3: design dependencies explicitly

provide guidance for which dependencies are ok

how OOP
encourages

dependencies

Session

Comment

FavoriteUpvote

Profile

Post

most apps are made from familiar functions

let’s build it with OOP

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

adding upvoting

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

adding karma

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

adding commenting

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

what’s wrong with this code?

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

Posting

Upvoting

Commenting

Karma

User authentication

no separation of concerns
Post class contains posting,

commenting, upvoting, karma

dependencies between files
Post class calls User class

to get karma points

classes are novel & not reusable
Post class won’t work in an app
that doesn’t have karma points

can’t be built independently
to build Post class, need User class

to have been built already

a different way

concept User {
 Map [User, String] name;
 Map [User, String] password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
}

concept Post [U] {
 Map [Post, U] author;
 Map [Post, URL] url;
 Post new (a, u) { … }
}

concept Karma [U] {
 Map [U, Int] karma;
 incKarma (u, i) { … }
 hasKarma (u, i) { … }
}

concept Upvote [U, I] {
 Map [U, I] ups, downs;
 upvote (u, i) { … }
 downvote (u, i) { … }
}

concept Comment [U, T] {
 Map [Comment, U] author;
 Map [Comment, T] target;
 Map [Comment, String] body;
 Comment new (a, t, b) { … }
}

when HTTP.request (downvote, u, i)
sync
 Karma.hasKarma (u, 10)
 Upvote.downvote (u, i)

concerns
now cleanly
separated

coupling is
gone: refs are
polymorphic

natural OOP coding produces bad dependencies

class Post {

 List<Comment> comments;

 …

 }
Comment

Post

“Post uses comment”

any app including Post
must include Comment too

😢

dependencies
& concepts

what conventional programming looks like

app-
specific

modules

module
dependencies

a different approach using concepts

familiar
modules

runtime
only

icons by Luis Prado & Zach Bogart, Noun Project

conductor
coordinatesapp-specific

details

concepts are free-standing

Post
concept

Karma
concept

Upvote
concept

UserAuth
concept

users can understand concepts independently

designers can design concepts independently

programmers can code concepts independently

but Parnas’s subsets are still relevant

Post
concept

Karma
concept

Upvote
concept

UserAuth
concept

check your understanding

Post
concept

Karma
concept

Upvote
concept

UserAuth
concept

what do the arrows mean?
Karma -> Upvote?

what are the subsets?
how many are there?
what do they include?

what does an app look like
with just Post, eg?

concept instances
& indexing

concept scoping principles

enough for concept function

but no more than needed

checklist: concept state

concept Labeling [Item]

state
labels: Item -> set Label

example: how many labeling instances?
one for each macOS user, or one for the whole filesystem?

every concept can be
instantiated: perhaps many times
indexed: one some objects

small scope, many instances
simplifies concept definition
separation of concerns
opportunity for concurrency

larger scope, few instances
support more functionality

check your understanding: which is correct?

enough for concept function

but no more than needed

checklist: concept state

concept User

state
username: UserName
password: Password

concept UserAuth [User]

state
username: User -> one UserName
password: User -> one Password

check your understanding: which is best?

enough for concept function

but no more than needed

checklist: concept state

one instance for all of Gmail

state
labels: Item -> set Label

concept Labeling [Item]

one instance for each Gmail user

a design puzzle: which is best?

enough for concept function

but no more than needed

checklist: concept state scope

one instance for OpenTable

state
a set of resources
a set of bookings
for each booking
 a resource
 an owner

concept Reservation

one instance for each restaurant

one instance for each restaurant/location pair

Zoom chat:
design issues

breakout rooms, chat & broadcast

when in breakout room
chat is limited to members of the room
can’t even message the host of the meeting
and host can’t message all meeting participants

Zoom’s solution
add a new concept called Broadcast
similar to Chat, but can’t reply, click on links, or persist

what do you think is going on in this design?

new joiner can’t read old messages

private messages

other complications

a concept framing

one instance for each Zoom meeting occurrence

state
a set of members
a set of messages
for each message
 a sender, a body, a time

concept Chat

one instance for each Zoom meeting, all occurrences

one instance for each breakout room within a meetingfor each member
 a join time

actions
join (u: User)
leave (u: User)
post (u: User, m: Text): Message
can_view (u: User, m: Message)

is this state sufficient?

how are chats indexed?

loss of design knowledge?

original design
when move to breakout, chat from main room cleared
so how to share instructions for breakouts?

zoom fixes this
messages from chat copied to breakout room

“new meeting chat experience”
threads, quoting, formatting in chat

a regression
now messages no longer copied to breakout room

exercise

take a collection of Autodesk concepts
for now, don’t worry too much about exact definitions
eg, Model, Analysis, Evaluation, Proposal, Template, …

construct a subset diagram for them
does the diagram reflect the history of the product’s development?
are all the sensible subsets realizable in practice?
what else can you learn from the diagram?

takeaways

concepts are independently defined
a concept can be reused in a different app
doesn’t require the presence of other concepts

but in a single app
only certain combinations of concepts will make sense
these subsets define a family of possible applications

the subset dependency diagram
can clarify which concepts are core, what order to develop in, etc

