
Daniel Jackson · Autodesk · Woodinville, WA · Dec 3-5, 2024

disentangling
concepts

revisiting states
& actions

a simple but potent concept

concept Labeling

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

a label

show messages with label hacking

also implemented as a label

another application: the labeling concept in Gmail

defining the concept’s actions

concept Labeling

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add (l: Label, i: Item)
remove (l: Label, i: Item)
filter (ls: set Label): set Item

defining the concept’s state

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add (l: Label, i: Item)
remove (l: Label, i: Item)
filter (ls: set Label): set Item

state
a set of items
for each item
 a set of labels

concept Labeling

defining the concept’s state

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

Item

Label

labels

a type variable

concept is generic

Label1Item1

Item2 Label2

Item1 Label1

Item2 Label1

Item2 Label2

actions
add (l: Label, i: Item)
remove (l: Label, i: Item)
filter (ls: set Label): set Item

state
a set of items
for each item
 a set of labels

defining an action

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add (l: Label, i: Item)
 add l to the set of labels of i
…

state
a set of items
for each item
 a set of labels

check your understanding: how does an action update the state?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

Label1Item1

Item2 Label2

Item1 Label1

Item2 Label1

Item2 Label2

before add (Label2, Item1)

Label1Item1

Item2 Label2

Item1 Label1

Item1 Label2

Item2 Label1

Item2 Label2

after add (Label2, Item1)

actions
add (l: Label, i: Item)
 add l to the set of labels of i
…

state
a set of items
for each item
 a set of labels

anything suspicious about the actions?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add (l: Label, i: Item)
remove (l: Label, i: Item)
filter (ls: set Label): set Item

state
a set of items
for each item
 a set of labels

where do labels come from?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
new_label (name: Text): Label
add (l: Label, i: Item)

state
a set of items
for each item
 a set of labels
a set of labels
for each label
 a name

Zoom’s “reactions”

clap

yes faster away

hand

Zoom’s reactions

no slower

love

disappear after 10s

often left up mistakenly

clear feedback:
all but these

mutually disjoint too!

mutually disjoint

counted

counted too

anomalous behaviors

functions by reaction type

yes yes, but should probably be no

disjointness of reaction types: my take

yes yes, but should probably be no

exercise: redesigning
Zoom’s “reactions”

can we do better?

goals
break the behavior into a small set of concepts
use familiar concepts whenever possible
make each concept simple, robust & understandable
leave some flexibility to synchronizations

strategy
1. factor roughly into concepts
2. outline each concept (name, purpose, OP, actions, state)
3. consider syncs, and adjust concepts if necessary
4. evaluate to ensure anomalies (esp. disjointness) are fixed

Reaction

Presence

FeedbackPoll

familiar
concept

familiar
concept

my take: splitting into coherent concepts

ReactionPresence FeedbackChat

concept Presence [User]

purpose manage modes of users in meeting

principle a user joins a meeting in listening
mode, and can switch to requesting and
(when called on) talking mode and then
back again to listening

state
let Mode =
 {listening, talking, requesting, absent}
a set of users
for each user
 a mode

actions
join (u: User, m: Mode)
change_to_mode (u: User, m: Mode)
leave (u: User)
is_present (u: User)

design questions
what mode does a user join in?
do we need an action to delete a poll?
can a user change their response?
what can host control?

concept Audio [User]

purpose manage audio muting

principle a user joins a meeting muted and
can unmute to speak and then mute again
to avoid being heard

state
a set of users
for each user
 whether muted or not

actions
join (u: User)
mute (u: User)
unmute (u: User)
leave (u: User)

design questions
what mode does a user join in? where set?
is video hiding the same concept? part of this?

concept Polling [User]

purpose get group opinion on questions

principle you open a poll, users respond
and tallies of yes/no are available

state
a set of polls
for each poll
 a question text
 a set of responses
 for each response
 a responding user
 a yes or no response
 yes-total, no-total // derived

actions
open (question: Text): Poll
respond (u: User, p: Poll, r: Bool)
close (p: Poll)

design questions
should polling go beyond binary?
can you vote both yes and no?
do we need an action to delete a poll?
can a user change their response?

looking forward
do we really need a feedback concept? isn’t it the
same as this one?

concept SpeakerFeedback [User]

purpose offer feedback to speaker

principle users can request that the
speaker go slower or faster, and an
ongoing tally is available

state
a set of users requesting slower
a set of users requesting faster

actions
request_slower (u: User)
request_faster (u: User)
clear (u: User)

design questions
should requests expire?
should requests be clearable by speaker?

concept Reaction [User]

purpose let users convey reactions

principle users react and the reactions
are visible to all

state
a set of reactions
for each reaction
 a reacting user
 an emoji

actions
react (u: User, e: Emoji)

design questions
can users react with multiple emojis?
should reactions expire?
should there be a clear action?

Presence/Audio

when Presence.change_to_mode(u, listening)
sync
 Audio.mute (u)

when Presence.change_to_mode(u, speaking)
sync
 Audio.unmute (u)

design questions
unmute when going absent?
or let user set this as preference?
same syncs for video hiding?

Presence/SpeakerFeedback

when SpeakerFeedback.request_slower (u)
sync
 Presence.is_present (u)

design questions
also prevent poll response?
also prevent unmuting?

when SpeakerFeedback.request_slower (u)
sync
 Presence.change_to_mode (u, listening)

looking at Zoom’s latest design (1)

looking at Zoom’s latest design (2)

Facebook’s
“reactions”

do angry reactions promote posts?

exercise: can you analyze this in terms of concepts?

three concepts we saw before

concept Upvote

purpose rank items by popularity

concept Reaction

purpose support quick responses

concept Recommendation

purpose infer user preferences

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

principle when user selects
reaction, it’s shown to the author
(often in aggregated form)

principle user’s likes lead to ranking
of kinds of items, determining which
items are recommended

concept Reaction
purpose convey emotion to author
actions
 reactAngry (u: User, i: Item)
 …

a concept diagnosis

concept Upvote
purpose rank items by popularity
actions
 upvote (u: User, i: Item)
 … unwanted

sync?

a facebook loosening: a good or bad design move?

Upvote

loosen

Reaction

Upvote
ReactionLike Comment

Approve CommentReact

loosen

exercise:
Autodesk concepts

consider an area of functionality in an Autodesk product
limit to a single scenario, eg evaluating metrics against a target-set

find a couple of concepts that
covers the essential functionality
make concepts smaller to separate concerns
make concepts larger to encapsulate related functionality

consider synchronizations between concepts
have you left enough flexibility?
can you synchronize as tightly as you want?

concept Evaluation [Subject]

actions
new_outcome (): Outcome
new_target (m: Metric, val: Real, lo, hi: Real + None): Target
add_target (o: Outcome, t: Target)
new_analysis (s: Subject, readings: set (Metric, Real)): Analysis
evaluate (o: Outcome, a: Analysis): Report

terminology
using current catalog terms
outcome is desired outcome, set of targets
metric is something like “square footage”
analysis is set of metrics with values
subject is generic term for model etc
report is result of evaluation, currently unspecified

design questions
who defines metrics and where are they stored?

concept Analysis

state
set of elements
for each element
 a set or attributes
 for each attribute
 a property and a value
for each property
 a name

design questions
how to sync analysis and model state?

actions
add_element (e: Element)
set_property (e: Element, p: Property, v: Real)
analyze (): set (Metric, Real)

concept Model

actions
set_property (e: Element, p: Property, v: Real)

takeaways

disentangling: bad smells and design moves

overloading
1 concept : N purposes

make it familiar
recognize an existing concept

make it reusable
factor out a handy concept

complex behavior
non-uniformities, ad hoc

make it orthogonal
so more options for user

confused purpose
not clear what it’s for

make it generic
concept works more widely

make it customizable
by changing syncs

what’s next

disentangling: a kind of refactoring
existing functionality conflates concepts
disentangling separates them out

can you just invent the right concepts?
as you design a new function, embody in concepts

the QDM
a general strategy for inventing effective concepts

