
Daniel Jackson · Autodesk · Woodinville, WA · Dec 3-5, 2024

designing
synchronizations

designing Hacker News:
sync as composition

Session

Comment

FavoriteUpvote

Profile

Post

an app composed of familiar concepts

… with some creative variation

“combinational creativity” [Boden]
familiar elements combined in new ways

for HackerNews, things like
a post has a title and either just a link, or just a question
no comments on a post after 2 weeks, no edits after 2 hours
can’t downvote a comment until your own post upvoted
…

how to add app-specific functionality?

suppose I want this behavior:
you can’t downvote an item

until you’ve received
an upvote on your own post

concept Upvote

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

purpose privilege good users

concept Karma

state
karma: User -> one Int

actions
reward (u: User, r: Int)
permit (u: User, r: Int)

define a new concept!
a hint: not just used by Upvote

purpose rank items by popularity purpose share content

concept Post

state
author: Post -> one User
body: Post -> one Text

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)
get_author (p: Post): User

actions
reward (u: User, r: Int)
permit (u: User, r: Int)

concept Upvote

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

concept Karma

when Upvote.downvote (u, i)
sync Karma.permit (u, 20)

compose concepts by action synchronization

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)
get_author (p: Post): User

concept Post

when
 Upvote.upvote (u, i)
 Post.get_author (i) = u’
sync Karma.reward (u’, 10)

concept Upvote concept Karma concept Post

upvote (Bob, p1) reward (Alice, 10)

upvote (Carol, p1) reward (Alice, 10)

downvote (Alice, p2) permit (Alice, 20)

create (Alice, …) -> p1

get_author (p1) -> Alice

get_author (p1) -> Alice

create (Bob, …) -> p2

synchronizing concepts

concept Upvote concept Karma concept Post

upvote (Bob, p1) reward (Alice, 10)

upvote (Carol, p1) reward (Alice, 10)

downvote (Alice, p2) permit (Alice, 20)

create (Alice, …) -> p1

get_author (p1) -> Alice

get_author (p1) -> Alice

create (Bob, …) -> p2

key properties

not a call:
decoupled

trace meets
concept spec

app-
independent

composition uses
event sync from

Hoare’s CSP

not a new idea

mediator pattern
subject of

Sullivan’s thesis

writing down
synchronizations

Upvote/Post/Karma syncs

when Upvote.upvote(user_id1, post_id)
sync
 Post.get_author(post_id) -> user_id2
 Karma.reward(user_id1, 10)

when Upvote.downvote(user_id1, post_id)
sync
 Karma.permit(user_id1, 20)

in a web request setting

when HTTP.request(“edit_post", token, post_id, content, labels) -> request_id
 JWT.verify(token) -> user_id
 Post.get_author(post_id) -> user_id
sync Article.getIdBySlug(slug) -> article_id
 Post.update(post_id, content)
 Labeling.update(post_id, labels)
 HTTP.respond(“post”, post_id, user_id, request_id)

cascading deletes

when HTTP.request("delete_post", token, post_id) -> request_id
sync
 JWT.verify(token) -> user_id
 Post.delete(post_id)
 HTTP.respond(“Post deleted", request_id)

when Post.delete(post_id)
sync Comment.byTarget(post_id) -> comments
 Comment.deleteMany(comments)

when Post.delete(post_id)
sync Labeling.delete(post_id)

check your
understanding

true or false?

1. syncs are transactional: every action occurs or none of them
2. syncs are bidirectional: if A is sync’d with B, then B is sync’d with A
3. syncs fire based on just one action
4. a bad sync can break a concept
5. adding syncs adds new concept behaviors
6. coding syncs requires a novel framework or language
7. too many syncs may damage performance

tighten/loosen
synchronization
as a design move

tighten-loosen design moves: tradeoff automation/flexibility

tighten

light pull / door lock airplane toilet lock

loosen

rotary dimmer switchdimmers with separate controls

Schindler’s
PORT elevator

Schindler’s PORT elevator

UserAuth Directory Port

get floor for user U
returns F

enter floor F
indicates bank B

elevator arrives
at bank B

elevator stops
at floor F

user U registered
at floor F

card C authenticates
user U

card C issued
for user U

increased automation, better security, reduced flexibility

a surprising
synchronization

in Google calendar

HCI Seminar

Daniel’s Calendar

seminar
announced as

email to listserv
with attached
calendar event

event installed
automatically in
user’s calendar

user deletes event
from calendar

cancellation email
automatically sent
to other invitees

HCI Seminar

Daniel’s Calendar

concept Calendar
purpose record upcoming engagements
actions
 create an event
 delete an event
 …

concept Invitation
purpose coordinate event participants
actions
 accept invitation
 decline invitation
 …

a long time problem in iCal too
how to delete spam calendar events?

resolution to design problem
make sync optional

the evolution of
full screen toggle

loosen: slideshow and full screen

full screen toggle
emerges as concept

(c. 2010?) play-in-window option
turn off synchronization

(2021)

Fullscreen

Slideshow

loosen

Slideshow

Slideshow

Fullscreen

exercise:
separation
of concerns

user session

a familiar combination

concept UserAuth

purpose authenticate users

principle
 after a user registers with a username and password,
 they can authenticate as that user by providing a matching
 username and password

state
 registered: set User
 username, password: registered -> one String

actions
 register (n, p: String): User
 authenticate (n, p: String): User

concept Session [User]

purpose authenticate user for extended period

principle
 after a session starts (and before it ends),
 you can get the user of the session
state
 active: set Session
 user: active -> one User

actions
 start (u: User): Session
 get_user (s: Session): User
 end (s: Session)

what syncs are needed? do sessions last forever?where is one of these used
without the other?

why separate concepts are useful

applications of UserAuth without Session applications of Session without UserAuth

authenticating one-off actions in operating systems
MacOS: authenticate when opening app for first time

Unix: executing command requiring superuser

reauthenticating mid-session for critical actions
confirming bank transfers

one-time authentication in websites
when cancelling a subscription

authenticating by different means
biometrics such as facial recognition, fingerprint

unauthenticated sessions
in some games and chat apps, user just enters name

and name/score shown on leaderboard

when HTTP.request(“register”, username, password) -> request
sync UserAuth.register (username, password) -> user
 HTTP.response (“register success”, request)

when HTTP.request(“login”, username, password) -> request
sync UserAuth.authenticate (username, password) -> user
 Session.start (user) -> session
 HTTP.response (“login success”, session, request)

when HTTP.request(“logout”, session) -> request
sync Session.end (session)
 HTTP.response (“logout success”, request)

when HTTP.request(“create_post”, content, session) -> request
sync Session.get_user (session) -> user
 Post.create (user, content) -> post
 HTTP.response (“create success”, post, request)

synchronizing authentication and sessions

how to make sessions expire after 5 minutes?

 when HTTP.request(“register”, username, password) -> request
 sync UserAuth.register (username, password) -> user
 HTTP.response (“register success”, request)

 when HTTP.request(“login”, username, password) -> request
 sync UserAuth.authenticate (username, password) -> user
 Session.start (user) -> session
 ???
 HTTP.response (“login success”, session, request)

 when HTTP.request(“logout”, session) -> request
 sync Session.end (session)
 ???
 HTTP.response (“logout success”, request)

 when HTTP.request(“create_post”, content, session) -> request
 sync Session.get_user (session) -> user
 ???
 Post.create (user, content) -> post
 HTTP.response (“create success”, post, request)

concept ExpiringResource [Resource]

purpose handle expiration of short-lived resources

principle
 if you allocate a resource r for t seconds,
 then after t seconds, the resource expires

state
 active: set Resource
 expiry: Resource -> one Date

actions
 allocate (r: Resource, t: int)
 deallocate (r: Resource)
 renew (r: Resource, t: int)
 expired (r: Resource): Bool

a solution

concept ExpiringResource [Resource]

purpose handle expiration of short-lived resources

principle
 if you allocate a resource r for t seconds,
 then after t seconds, the resource expires

state
 active: set Resource
 expiry: Resource -> one Date

actions
 allocate (r: Resource, t: int)
 deallocate (r: Resource)
 renew (r: Resource, t: int)
 expired (r: Resource): Bool

 when HTTP.request(“register”, username, password) -> request
 sync UserAuth.register (username, password) -> user
 HTTP.response (“register success”, request)

 when HTTP.request(“login”, username, password) -> request
 sync UserAuth.authenticate (username, password) -> user
 Session.start (user) -> session
 ExpiringResource.allocate (session, 300)
 HTTP.response (“login success”, session, request)

 when HTTP.request(“logout”, session) -> request
 sync Session.end (session)
 ExpiringResource.deallocate (session)
 HTTP.response (“logout success”, request)

 when HTTP.request(“create_post”, content, session) -> request
 sync Session.get_user (session) -> user
 ExpiringResource.expired (session) -> false
 Post.create (user, content) -> post
 HTTP.response (“create success”, post, request)

 when ExpiringResource.expired (session) -> true
 sync Session.end (session)

exercise:
designing syncs

identify two or more Autodesk concepts to synchronize
could start from the one you picked last time
split it up or combine it with another one
or focus on some function that you sense involves synchronization

write a concept outline for each concept
name, purpose, OP, action names and args

develop some sync proposals
consider which actions might be linked
you might need to tweak the concepts

a possible area of focus
how are benchmarks updated when models change?
or when new design options are created?
what happens when benchmarks get updated?

takeaways

how synchronization helps

customize with
app-specific

behaviors

separate concerns
splitting into

reusable concepts

automate behavior
splitting into

reusable concepts

what’s next?

now you understand
what concepts are
how to define them
how to compose them

our next step
finding concepts in a larger context
how do you disentangle a complex app?

