
Daniel Jackson · Autodesk · Woodinville, WA · Dec 3-5, 2024

designing concepts:
purposes, OPs,
actions & states

purposes
& OPs

seeking a UI-independent definition

StackOverflow

Twitter

NYTimes

#1: give it a name

concept Upvote

what other names might you choose?

why do names matter?

#2: say what it’s for (purpose)

concept Upvote

purpose rank items by popularity

purpose encourage authors

purpose engage evaluators

why is it important to know your purpose?

why’s it good to identify a primary purpose?

what is the design impact of one purpose over another?

similar UIs, very different purposes

concept Upvote

purpose rank items by popularity

concept Reaction

purpose support quick responses

concept Recommendation

purpose infer user preferences

#3: explain how it works (operational principle)

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

operational principles for related concepts

concept Upvote

purpose rank items by popularity

concept Reaction

purpose support quick responses

concept Recommendation

purpose infer user preferences

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

principle when user selects
reaction, it’s shown to the author
(often in aggregated form)

principle user’s likes lead to ranking
of kinds of items, determining which
items are recommended

check your
understanding

check your understanding: purposes

consider the concept
ConferenceRoomBooking

which of these is a good purpose?
“make it easy to book conference rooms”
“address Autodesk’s conference room demand”
“ensure equitable use of conference rooms”
“prevent conflicts in conference room usage”
“improve conditions for in-person work”
“manage orderly allocation of conference rooms”
“ease process of finding conference room for meeting”
“ensure conference room availability when needed”
“help employees get rooms and prevent others”

how generic or specific is this concept?
conference rooms or any room?
rooms or any resource?

cogent, not vague

need-focused

specific

evaluable & refutable

one purpose, not more

checklist: purposes

check your understanding: OPs

which of these is a good OP?
“when you select a slot, enter info and click submit, the booking appears”
“when you book a room, it appears in the calendar”
“if you book a room for a time slot, it will be available for you to use then”
“to use a conference room, first you have to book a slot”
“when you book a slot, nobody else can take it afterwards” UI independent

value: end-to-end

compelling story

matches purpose

minimal context

checklist: OPs

defining behavior
with states & actions

a simple but potent concept

concept Labeling

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

a label

show messages with label hacking

also implemented as a label

another application: the labeling concept in Gmail

defining the concept’s actions

concept Labeling

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add label to an item
remove label from an item
filter on a set of labels

defining the concept’s state

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add label to an item
remove label from an item
filter on a set of labels

state
labels for each item

concept Labeling

state
labels for each item

making the state precise

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

actions
add label to an item
remove label from an item
filter on a set of labels

state
labels: Item -> set Label

Item

Label

labels

a type variable

concept is generic

Label1Item1

Item2 Label2

Item1 Label1

Item2 Label1

Item2 Label2

actions
add label to an item
remove label from an item
filter on a set of labels

making the actions precise

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

state
labels: Item -> set Label

actions
add (l: Label, i: Item)
 i.labels += l
remove (l: Label, i: Item)
 i.labels -= l
filter (ls: set Label): set Item
 return {i: Item | ls in i.labels}

add l to the labels of i

Label1Item1

Item2 Label2

Item1 Label1

Item2 Label1

Item2 Label2

check your understanding: how does an action update the state?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

state
labels: Item -> set Label

actions
add (l: Label, i: Item)
 i.labels += l
remove (l: Label, i: Item)
 i.labels -= l
filter (ls: set Label): set Item
 return {i: Item | ls in i.labels}

Label1Item1

Item2 Label2

Item1 Label1

Item2 Label1

Item2 Label2

before add (Label2, Item1)

Label1Item1

Item2 Label2

Item1 Label1

Item1 Label2

Item2 Label1

Item2 Label2

after add (Label2, Item1)

checklists:
states & actions

check your understanding: what’s a good action?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

state
labels: Item -> set Label

actions
add (l: Label, i: Item)
 i.labels += l
remove (l: Label, i: Item)
 i.labels -= l
filter (ls: set Label): set Item
 return {i: Item | ls in i.labels}

high level, not UI

atomic, not ongoing

user facing, not internal

checklist: actions

cover the OP and more

which of these might be a reasonable action?
select item to label
clear storage for unused labels
remove all labels from item
copy labels from one item to another
maintain display of item labels

check your understanding: what’s a good state?

concept Labeling [Item]

purpose organize items

principle if you add a label to an
item, then later you can filter on
that label and find the item

state
labels: Item -> set Label

actions
add (l: Label, i: Item)
 i.labels += l
remove (l: Label, i: Item)
 i.labels -= l
filter (ls: set Label): set Item
 return {i: Item | ls in i.labels}

sufficient for actions

no implementation bias

no useless information

checklist: states

which of these might be a reasonable state?
a hash table mapping items to lists of labels
a set of items and a set of labels
a set of labelings, each being an item and a label
a mapping from labels to sets of items

check your understanding: which state is correct?

concept User

state
username: UserName
password: Password

concept UserAuth

state
username: User -> one UserName
password: User -> one Password

sufficient for actions

no implementation bias

no useless information

checklist: states

state
???

actions
???

concept Upvote

check your understanding: what actions & states for Upvote?

state
by: Vote -> one User
for: Vote -> one Item
Upvote, Downvote: set Vote
rank: Item -> one Int

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

DownvoteUpvote

Vote

User

Post

by

Vote

Item
for

Int rankpurpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

concept Upvote [Item, User] make generic

designing
richer states

a simple folder concept, as used in imap

concept FolderTree

state
a root folder
for each folder
 the folders or items it contains
a name for each folder

actions
create a folder
delete a folder
move an object to a folder
rename a folder

FolderFile

Object

contents

Name

name

exercise: which states are valid?

state
a root folder
for each folder
 the folders or items it contains
a name for each folder

FolderFile

Object

contents

Name

name

what are the invariants (rules) of this state?
no folder or item has two parents
every folder or item (except the root) has a parent
no two folders have the same name
a folder can contain either items or folders, not both
no folder can contain itself, directly or indirectly
all objects reachable from the root

concept FolderTree

exercise:
an Autodesk concept

defining a concept

in pairs, pick a concept from an Autodesk product
give it a name
write an OP
produce a list of actions, starting from the OP
devise a state to support the actions

outcome-based BIM concepts
listed on next slide

sufficient for actions

no implementation bias

no useless information

checklist: states

high level, not UI

atomic, not ongoing

user facing, not internal

checklist: actions

cover the OP and more

cogent, not vague

need-focused

specific

evaluable & refutable

one purpose, not more

checklist: purposes

UI independent

value: end-to-end

compelling story

matches purpose

minimal context

checklist: OPs

takeaways

how would you explain the concept of restaurant reservation?
to someone time-traveling from the 1850s, say

before explaining how, you might explain why
often when I come with my party, there’s no room!
now restaurants have a way to ensure there will be

the
purpose

how would you explain how it works?

what you wouldn’t say
press these buttons to call the restaurant, then ask for reservations…

or: the restaurant has a book listing people, times and phone numbers…
the UI

the data model

instead you might tell a story like this
if you call the restaurant and reserve a table for a certain time,

then if you turn up at that time, a table will be available for you
the OP

how would you teach a restaurant how to do it?

keep a reservation book
two columns, time slots & people

instruct the staff
how to record a reservation

the
state

the
actions

sufficient for actions

no implementation bias

no useless information

checklist: states

high level, not UI

atomic, not ongoing

user facing, not internal

checklist: actions

cover the OP and more

cogent, not vague

need-focused

specific

evaluable & refutable

one purpose, not more

checklist: purposes

UI independent

value: end-to-end

compelling story

matches purpose

minimal context

checklist: OPs

what’s next?

how are concepts assembled?
and how to avoid procedure calls, compromising independence?

and to allow different architectural patterns of event handling?

