product families
& catalogs

Daniel Jackson - Autodesk - Woodinville, WA - Dec 3-5, 2024

concepts at Palantir (2023)

Wilczynski et al, arxiv.org/abs/2304.14975

Object Explorer B

Object View "add to
list" screenshot

#24 List App UX Vision

Object Explorer Lists
Screenshot

Lists

ﬂ Lists Literature Review

Gotham Search Lists

Results
Knowledge
Management

Browser

challenges they were facing

issues not attributable to modules or even products
inconsistent UX across products for similar functions
“conceptual entropy”: growing complexity

what they did

integrated concepts into company knowledge base

leac

exp

ers bootstrapped by writing initial concepts
oiting existing documents

now 200 concepts recorded, 280 regular users

concepts go beyond engineering
concepts used in marketing; IP lawyers interested too

concepts empower PMs
new career path: PMs given ownership of concepts

anticipated impacts
cataloging key assets & avoiding rework

aligning concepts across products, reuse
aligning marketing/design/engineering

a history of
programming
In 5 minutes

the origins of the problem

divide and conquer
break task T1 into subtasks T11, T12
implement as modules

a new problem: coupling

it T11 tails, T1 will fail too

to understand T1, you need to understand T11
if you change T11, may need to change T1 too

much of software engineering
is focusing on mitigating this problem

T11 T12

advance #1: specifications as firewalls

change the dependencies
T1nolonger dependson T11 and T12
instead it depends on the specs S11 and S12

modular reasoning

S
S

NOW

NOW T

Nat

Nat

"1 satisfies S1 assuming S11 and S12

11 satisfies S11, T12 satisfies S12

\\\\\
RIS

\7\

in 1975, this was controversial!

David Parnas was right, and | was wrong about

. information hiding. | am now convinced that
“man-month information hiding, today often embodied in
Essays on Software Engineering object programming, is the only way of raising
the level of software design.

Fred Brooks, Anniversary edition of MMM, 1995

. L. Parnas of Carnegie-Mellon University has proposed a
still more radical solution.’ His thesis is that the programmer is
most effective if shielded from, rather than exposed to the details
of construction of system parts other than his own. This presup-
poses that all interfaces are completely and precisely defined.
While that is definitely sound design, dependence upon its perfect
accomplishment is a recipe for disaster. A good information sys-
tem both exposes interface errors and stimulates their correction.

advance #2: OOP and dynamic configuration

S1

since T1 only needs an S11 and an S12
Tl dontneed T11 and T12 in particular
- can avoid naming T11and T12in T1

pass them in at runtime instead

a new problem
can no longer find dependencies statically

: \g
'y L
IS |
IS L
s L
s L
& L
™ L
&
?
4
ﬂ h

this is how “gang of four” patterns work

Subject

attachio)
detachlo)
notify ()

Observer

observers
‘ * updatey) I

for each o in observers.

0. update(),

Subject]
-slate

getState()

ymp k setState()

Observer]
-slale

update()

1Su b_jectl

S|

Observer2
-slale

update()

Jagram isubject | |

A sample UML class and sequence diagram for the observer design pattern. °!

§ M

ol

:Observerl

02
:Observerl

update|()

advance #3: design dependencies explicitly

Designing Software for Ease of Extension
and Contraction

DAVID L. PARNAS

Abstract—Designing software to be extensible and easily contracted is
discussed as a special case of design for change. A number of ways that
extension and contraction problems manifest themselves in current
software are explained. Four steps in the design of software that is
more flexible are then discussed. The most critical step is the design of
a software structure called the “uses” relation. Some criteria for design
decisions are given and illustrated using a small example. It is shown
that the identification of minimal subsets and minimal extensions can
lead to software that can be tailored to the needs of a broad variety of
users.

Index Terms—Contractibility, extensibility, modularity, software en-
gineering, subsets, supersets.

Manuscript received June 7, 1978; revised October 26, 1978. The
earliest work in this paper was supported by NV Phillips Computer In-
dustrie, Apeldoorn, The Netherlands. This work was also supported by
the National Science Foundation and the German Federal Ministry for
Research and Technology (BMFT). This paper was presented at the
Third International Conference on Software Engineering, Atlanta, GA,
May 1978.

The author is with the Department of Computer Science, University
of North Carolina, Chapel Hill, NC 27514. He is also with the Informa-
tion Systems Staff, Communications Sciences Division, Naval Research
Laboratory, Washington, DC.

I. INTRODUCTION

HIS paper is being written because the following com-
plaints about software systems are so common.

1) “We were behind schedule and wanted to deliver an early
release with only a <proper subset of intended capabilities>,
but found that that subset would not work until everything
worked.”

2) “We wanted to add <simple capability>, but to do so
would have meant rewriting all or most of the current code.”

3) “We wanted to simplify and speed up the system by re-
moving the <unneeded capability>, but to take advantage of
this simplification we would have had to rewrite major sec-
tions of the code.”

4) “Our SYSGEN was intended to allow us to tailor a sys-
tem to our customers’ needs but it was not flexible enough to
suit us.”

After studying a number of such systems, I have identified
some simple concepts that can help programmers to design
software so that subsets and extensions are more easily obtained.
These concepts are simple if you think about software in the
way suggested by this paper. Programmers do not commonly
do so.

0098-5589/79/0300-0128$00.75 © 1979 IEEE

provide guidance for which dependencies are ok

3) The criteria to be used in allowing one program to use
another: We propose to allow A “uses” B when all of the fol-
lowing conditions hold:

a) A is essentially simpler because it uses B;

b) B is not substantially more complex because it is not al-
lowed to use A;

c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but
not B.

how OOP

encourages
dependencies

most apps are made from familiar functions

4 Jackson structured programming (wikipedia.org) Post Session

106 points by haakonhr 63 days ago | hide | past | favorite | 69 commel...

Upvote Favorite

a uamemcnvulas 63 days ago [-]

. . yu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
user: danielnicholas

created: 63 days ago | 1'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing « | ‘uctures can be solved very systematically. HTDP addresses this class,
DuL pases oue suucwure oy on input structure; JSP synthesized i Comment It.

- The Proﬁle 1@ archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them

o

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with

events rather than objects.
[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A 0b-nix 63 days ago [—]
... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

let’s build it with OOP

class User { class Post {
String name; User author;
String password; String body;
User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n,p) {...} }
}

adding upvoting

class User { class Post {
String name; User author;
String password; String body;

User register (n, p) { ... } Set [User] ups, downs;
User authenticate (n, p) { ... } Post new (a, b) { ... }

} upvote (u) {...}
downvote (u) {... }

}

adding karma

class User { class Post {
String name; User author;

String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n, p) { ... } upvote (u) { ... }
incKarma (i) { ... } downvote (u) {

bool hasKarma (i) {... } if u.hasKarma (10) ...}

} }

adding commenting

class User { class Post {
String name; User author;
String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Seq [Post] comments;

User authenticate (n, p) { ... } Post new (a, b) { ... }

incKarma (1) { ... } upvote (u) { ... }

bool hasKarma (1) { ... } downvote (u) {

} 1f u.hasKarma (10) ...}
addComment (c) { ...}

}

what's wrong with this code?

class User { class Post {

String name; User author; User authentication
String password; String body; .
int karma; Set [User] ups, downs; Posting
User register (n, p) { ... } Seq [Post] comments; ,
User authenticate (n, p) { ... } Post new (a, b) { ... } Upvoting
inckarma (1) { ... } upvote (u) { ... } ,
bool hasKarma (i) { ... } downvote (u) { Commenting
} 1f u.hasKarma (10)
addComment (c) { ... } Karma
}
no separation of concerns classes are novel & not reusable
Post class contains posting, Post class won't work in an app
commenting, upvoting, karma that doesn't have karma points
dependencies between files can't be built independently
Post class calls User class to build Post class, need User class

to get karma points to have been built already

a different way

concept User { concept Post [U] {
Map [User, String] name; Map [Post, U] author;
Map [User, String] password; Map [Post, URL] url;
User register (n, p) {... } Post new (a, u) { ... }
Jser authenticate (n, p) { ... } }

}

concept Upvote [U, I] {

concept Karma [U] { Map [U, I] ups, downs; \;\;ILecn HTTP.request (downvote, u, 1)
jVIap LU, Int] I<.arma; upvote (u, 1)1 ... } Karma.hasKarma (u, 10)

ncKarma (u, 1) {...} downvote (u, 1) { ... } ' q "

nasKarma (u, 1) { ... }] Upvote.downvote (u, 1)

concept Comment [U, T] {
Map [Comment, U] author;
Map [Comment, T] target;
Map [Comment, String] body;
Commentnew (a, t,b) {... }

}

concerns coupling is
now cleanly gone: refs are
separated polymorphic

natural OOP coding produces bad dependencies

“Post uses comment”

any app including Post

class Post
{ Post must include Comment too

List<Comment> comments;

} V S
Comment

dependencies
& concepts

what conventional programming looks like

module
dependencies

aPP~
specific
modules

a different approach using concepts

app-specific
details

conductor

~ \w coordinates
o—

runtime

only

familiar
modules

concepts are free-standing

UserAuth Post Karma Upvote

concept concept concept concept

users can understand concepts independently
designers can design concepts independently

programmers can code concepts independently

but Parnas’s subsets are still relevant

Karma
concept

Upvote
concept

UserAuth
concept

Post
concept

check your understanding

Karma

concept

Upvote
concept

UserAuth
concept

what do the arrows mean?
Karma -> Upvote?

what are the subsets?
how many are there?
what do they include?

Post

concept what does an app look like

with just Post, eg?

concept instances
& indexing

every concept can be
instantiated: perhaps many times
indexed: one some objects

small scope, many instances
simplifies concept definition
separation of concerns
opportunity for concurrency

larger scope, few instances
support more functionality

concept scoping principles

checklist: concept state

\/ enough for concept function

\/ but no more than needed

concept Labeling [Item]

state
labels: Item -> set Label

example: how many labeling instances?
one for each macOS user, or one for the whole filesystem?

check your understanding: which is correct?

checklist: concept state

concept User \/ enough for concept function

state \/ but no more than needed
username: UserName

nassword: Password

concept UserAuth [User]

state
username: User -> one UserName
password: User -> one Password

check your understanding: which is best?

checklist: concept state

concept Labeling [Item]

state \/ enough for concept function

labels: Item -> set Label
\/ but no more than needed

one instance for all of Gmail

one instance for each Gmail user

a design puzzle: which is best?

. checklist: concept state scope
concept Reservation

state \/ enough for concept function

a set of resources ‘/
a set of bookings but no more than needed

for each booking
a resource
an owner

one instance for OpenTable
one instance for each restaurant

one instance for each restaurant/location pair

Zoom chat:
design issues

breakout rooms, chat & broadcast

® @ Breakout Rooms - In Progress ~ B

~ Room 1 1 Here's the assignment: https://docs.google.com/document/

| d/1_YBrHsZBO1pkA5pT3n8‘IIqogzcl8n_IYa8N2Iij2Xg/edit‘
g Rebecca Jackson —| Move To |

Cancal

. /

when in breakout room

chat is limited to members of the room

can't even message the host of the meeting
and host can't message all meeting participants

Zoom's solution
add a new concept called Broadcast
similar to Chat, but can't reply, click on links, or persist

(Broadcast Message to All | ‘ what do you think is going on in this design?

Broadcast a message to all breakout rooms

The host can broadcast a message to all breakout rooms, to share information with all participants.

Note: This must be enabled in your breakout room settings.

1. Inthe meeting controls, click Breakout Rooms == .

2. Click Broadcast, and select Broadcast Message.

3. Enter your message and click the send icon "¢ .
The message will appear for all participants in breakout rooms, and disappear after ~10 seconds.

other complications

‘N EON Chat
: Me to Everyone 12:09 PM

See intro slides here: http:// xTr chat
people.csail.mit.edu/dnj/talks/princeton20/ r

princeton 20 pdf Me to Rebecca Jackson (Direct Message) 11:51 AM

Isn’t this the most boring meeting you've been in?

(O To: (Direct Message) [[3 Filej (j
File | [|

| Type message here...

Claudia to Everyone 12:10 PM

Hi, sorry to be joining late

To

Type message here...

a concept framing

concept Chat 1s this state sufficient?
state
a set of members how are chats indexed?

a set of messages

one instance for each Zoom meeting occurrence
for each message

a sender, a body, a time one instance for each Zoom meeting, all occurrences
for each member one instance for each breakout room within a meeting
a join time
actions

join (u: User)

leave (u: User)

post (u: User, m: Text): Message
can_view (u: User, m: Message)

loss of design knowledge?

The Zoom Chat is broken (previous messages disappear after
Breakout Rooms)

7 mrjankeck ©

2023-01-07 02:47 AM
w2 Explorer 023-01-070

I The Zoom Meeting Chat is broken!!

Two of the Zoom Tech Hosts on my team have discovered that previous chat messages disappear once you
enter or come back from a Breakout Room.

For anyone who has been sharing instructions in the chat before you send participants off to do an acti
has some very serious consequences.

original design
when move to breakout, chat from main room cleared
so how to share instructions for breakouts?

zoom fixes this
messages from chat copied to breakout room

“new meeting chat experience”
threads, quoting, formatting in chat

a regression
now messages no longer copied to breakout room

exercise

take a collection of Autodesk concepts
for now, don't worry too much about exact definitions
eg, Model, Analysis, Evaluation, Proposal, Template, ...

construct a subset diagram for them

does the diagram reflect the history of the product’s development?
are all the sensible subsets realizable in practice?

what else can you learn from the diagram?

takeaways

concepts are independently defined
a concept can be reused in a different app
doesn't require the presence of other concepts

but in a single app
only certain combinations of concepts will make sense
these subsets define a family of possible applications

the subset dependency diagram
can clarity which concepts are core, what order to develop in, etc

