concept design
part 3: modularity

Daniel Jackson - Autodesk Online Workshop - June 2025



de/composition:
design is breaking up
& putting together




decomposing into parts with purposes
keeping hot
id

handle spout
holding -

teapot bOCIy

brewing



how does decomposition help?

incremental work reuse easier for users design focus
division of labor build on experience identify familiar parts separate concerns
exploiting Al reuse across suite too learn what you need drive by purposes



the two watchmakers

incremental work
division of labor
steady progress

®

Herb Simon, The Architecture of Complexity (1962)



how unique is it?

A Jackson structured programming (wikipedia.org)
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There’s a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class,
but bases code structure only on input structure; JSP synthesized input and output.

- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them helps.

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with
events rather than objects.

[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

A CraigJPerry 63 days ago [-]

This is referenced(1) as a core inspiration in the preface to "How to Design Programs” but i never researched it further because i‘ve found the “design
recipes” approach in htdp to be pretty solid in real life problems.

reuse

build on experience no other app is the same as HackerNews
reuse across suite too

HackerNews = Post + Comment + Upvote + Karma + ...

but its concepts are mostly identical to the concepts in other apps



design focus
separate concerns

drive by purposes

Dijkstra: separation of concerns

"Let me try tc explain to you, what to my taste is characteristic for
all intelligent thinking. Tt is, that one is willing to study in depth an
aspect of orne's subhject matter in isclstion for the sake of its own consis-
tency, all the time knowing that one is occupying oneself only with one

of the aspects.

It is what 1 sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the'only available
technique for effective ordering of ane's thoughts, that I know of. This is
what I mean by "focussing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that from
this aspect's point of view, the other is irrelevant. It is being one- and
multiple-track minded simultaneously,

Edsger Dijkstra, On the role of scientific thought (EWD447, 1974)



modularity
3 criteria




non-conflation

a single module doesn't
conflate unrelated functions

separated: not conflated

conflated

defining modularity

non-fragmentation

a single module contains
all of a function’s behavior

complete: not fragmented

fragmented

independence

one module doesn't
rely on another

independent

dependent



check your understanding

A concept in a design app lets users create projects
that assemble models and track their changes over time.

Which modularity criterion is this likely to violate? (pick one)
(a) Completeness, because it should also include the ability to edit models
(b) Independence, because modifications of models in other concepts will atfect this one

(c) Separation, because it mixes purposes related to versioning and aggregation



synchronization
how to decouple



A Jackson structured programming (wikipedia.org)
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There’s a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class,
but bases code structure only on input structure; JSP synthesized input and output.

- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them helps.

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with
events rather than objects.

[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A 0b-nix 63 days ago [—]
... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.



adding application-specific functionality

concept Upvote concept Karma concept Posting
purpose rank items by popularity purpose privilege good users purpose share content
actions state state
upvote (u: User, 1: Item) set of users each with a set of posts each with
downvote (u: User, 1: Item) karma points (an integer) a body (text)
unvote (u: User, 1: Item) an author (user)
actions
reward (u: User, r: Int) actions
suppose | want this behavior: create (u: User, t: Text): Post
you can't downvote an item de.lete (p: Post)
until you've received edit (p: Post, t: Text)

dal upvote on your own pOSt

could just modify Upvote
why is this bad?

define a new concept!
a hint: not just used by Upvote



composing concepts with synchronizations

concept Upvote

actions

upvote (u: User, 1: Item)
downvote (u: User, 1: Item)
unvote (u: User, 1: Item)

concept Web
actions
request (...)

when Upvote.upvote (u, 1)
where author of11s u” in Posting
then Karma.reward (u’, 10)

when Web.request (downvote, u, 1)

where
then U

I has >= 20 points 1n Karma

vote.downvote (u, 1)

concept Karma

state
set of users each witt
a number of karma points

actions
reward (u: User, r: Int)

concept Posting

state
a set of posts each with an author

actions

create (u: User, t: Text): Post
delete (p: Post)

edit (p: Post, t: Text)



concept Web

request (downvote, Alice, p2)

synchronization viewed over traces

concept Upvote concept Karma
not a call
concepts are
decoupled
upvote (Bob, p1) reward (Alice, 10)
upvote (Carol, p1) reward (Alice, 10)
downvote (Alice, p2) Alice has >= 20 karma
concepts stay
argely
application

independent

concept Posting

create (Alice, ...) -> pl

create (Bob, ...) -> p2

author of p1 is Alice

author of p1 is Alice

each concept

executes a
valid trace



not a new idea

Mediators:
C.A.R.Hoare FEasing the Design and Evolution of Integrated Systems
Communicating
equential
Is’rO%esses Kevin J. Sullivan

Technical Report 94-08-01

Department of Computer Science and Engineering

University of Washington

CAR HOARE SERES EDITOR

mediator pattern

composition uses subject of
event sync from Sullivan's thesis

Hoare's CSP



an architectural view of concept composition

standard software development

dependencies

between
modules

conflated &
incomplete
modules

app-specific
details

® conductor

coordinates

.. control & data

\ 2
2
2
.

¢“““..’0 mediated
u y :: E
o S
E .II separated

& complete
5 modules

concept-based software development



enforcing
independence




how concepts do not interact

upvote
reads

Upvote concept never
author call each other’s actions
from Post . ,
read or write each other’s state
and calls ) X e op
reward in share mutable composite objects

Karma



a data model
perspective




a data model for hacker news

Up Down

. L
. 77
. 77

‘ ’.

Session Vote

b
Int Y

user

karma for

b Text

favorites ody
users who are authors /

are the same set of users USGF author Item

who have emails ,~‘ h
email password

Email Password Post Comment

target




highlighting the entities

Up Down

. g
. 2
. 72

. 9

Session Vote

b
Int Y

user

karma for

b Text

favorites y

User auth or Item

Y——— 4«
email password

Email Password Post Comment

target




data models for concepts

Session

. Up Down

Session
luser User is generic too X C ¥
could be anything User «—'— \/ote
User (userid, IP, Mac address) l
for , ,
Int [tem Is generic
\ Eorites ltem could be anything
karma ¥ — (eg, Post, Comment)
>El User ltem Upvote
Karma
Favorite User User
Users are created in this
User concept and shared with author author
target

other concepts by syncs Post Comment R ltem
email password l body l bod
oay

Email Password Text Text

PasswordAuth Posting Commenting



listing the generic types as parameters of the concept

this means Upvote is
generic with respect to
the User and Item types

concept Upvote [User, Item] concept Karma [User] concept Posting [User]
purpose rank items by popularity purpose privilege good users purpose share content
state state state
set of votes each with set of users each with a set of posts each with
a user the voteis by karma points (an integer) a body (text)
an item the votes 1s for : an author (user)
whether Up or Down actions
reward (u: User, r: Int) actions
actions create (u: User, t: Text): Post
upvote (u: User, 1: Item) delete (p: Post)
downvote (u: User, 1: Item) edit (p: Post, t: Text)

unvote (u: User, 1: Item)



check your understanding

In what key respect is data modeling in concept design different? (select all that apply)
(a) Concept design decomposes the data model by functionality
(b) Concept design introduces the idea of generic types from programming into data models

(c) Concept design distinguishes entities from values



modularity example
restaurant reservations



concept RestaurantReservation [User]
purpose reducing wait time for tables

principle the restaurant makes slots
available at various times; a diner
reserves for a particular time, and
then can be assured of being seated
at that time

state

a set of slots each with

the start time (includes date)

a set of reservations each with
the user who made it
the slot being reserved
whether seated

actions
createSlot (t: Time)

ensures creates a fresh slot & associates with time t

reserve (u: User, t: Time): Reservation

requires some slot at time t not yet reserved
ensures creates & returns a fresh reservation

associates it with user u and the slot
seat (r: Reservation)

requires r is a reservation for about now

ensures mark r as seated

last time, one module
focused on one aspect: reservations

this time, whole system
how to organize variety of functions

main areas of function

identifying users

sending confirmations & reminders
punishing repeat no-shows

laying out tables in dining room
reserving based on party size
defining shifts with different layouts




some easy-ish design issues

identifying users

support standard password access & just email/phone
UserAccount concept to track users through password creation
UserPassword concept to manage password access

Capability concept to generate obscure reservation references?

sending confirmations & reminders
Notification concept holds contact preferences, tightly syncd
Reminder concept, because reminders are different

punishing repeat no-shows
Karma concept debit action, syncd with noShow action

laying out tables in dining room
FloorPlan concept backing a nice graphical Ul



concept RestaurantReservation [User]

state
slots with start times
reservations with user, slot

actions

createSlot (start: Time)

reserve (u: User, t: Time): Reservation
cancel (r: Reservation)

noShow (r: Reservation)

reserving based on party size

concept RestaurantReservation [User, Table]

state
slots with tables and start times

reservations with user, slot, party size

actions

createSlot (start: Time, t: Table)
reserve (u: User, s: Slot, party: int): Reservation

when Web.request (reserve, user, time, party)

where
slot for table at time (in RestaurantReservation)

party in range for table (in FloorPlan)

then
RestaurantReservation.reserve (user, slot, party)

why does reserve action now take slot?
because need to pick based on floor plan

why is Table generic for RestaurantReservation?
because it doesn't know anything about tables

concept FloorPlan

state

tables with
position and min/max party sizes

actions
configureTables (...)



turn control in Open Table

Turn Controls
Specify the minimum number of turns by party size or tables.

2 guests | - 3 | (o)

4 guests (=) | 2 | ()

Tabile 32 T+

+ Add party size
+ Add table

Select when to release turn control restrictions for the shift,

[M’tm 01.

—




shifts with different layouts

concept Shift [FloorPlan, Table]

concept RestaurantReservation [User, Slot] concept FloorPlan
state state state
reservations with user, slot, party size floor plans with tables, tables with shifts with times, floor plan, slots
. position and number of seats slots with times, min/max party, table
actions
—createSlot-(start: Time, t: Table) actions actions
reserve (u: User, s: Slot, party: int): Reservation configureTables (...) : FloorPlan setupShift (...)

cancel (r: Reservation)
noShow (r: Reservation)

when Web.request (reserve, user, time, party)

where
slot for table at time with party (in Shift)

then
RestaurantReservation.reserve (user, slot, party)

why does Shift now manage slots?
because of shift-specific functions
(eg, “turn time by party size”)



what concept design is and isn't

not a magic potion a framework/language
helps control complexity for structuring designs
not eliminate completely exploring collaboratively




purposes
& conflation




a concept design principle

specificity redundancy overloading
purposes:concepts are 1:1 >1 concept per purpose >1 purpose per concept

Pl Cl Pl Cl Pl Cl

~.

P2 C2 C2 P2




purpose 1 purpose 2

conflated:
two purposes

overloading leads to conflation

concept UserAccount
purpose ??°¢?

state

a set of users each with
a username
a password
an email address
a phone number
first and last names
profile picture

concept Password
purpose authenticate users

state

a set of users each with
a username
a password

concept Notification [User]

purpose notify users

state

a set of users each with
an email address
a phone number

concept Profile [User]

purpose share user info

state

a set of users each with
first and last names
profile picture



overloading examples from my book

US Letter (Manual - Front)
v US Letter
US Letter (Manual - Roll)
US Letter (Sheet Feeder - Borderless)
US Letter (Manual - Roll (Borderless))

Epson’s PaperSize concept

(J Comment

Facebook’s Reaction concept

A SHOOTING MENU

PN

BJSELF-TIMER
150[Ry0)

B K3V AGE SIZF
~ | EAIMAGE QUALITY

ENDYNAMIC RANGE
[ZFILM SIMULATION
EAFILM SIMULATION BKT

Git's Commit concept



conflation example:
reactions 1n Zoom




Zoom'’s reactions

0 e S
P -

| - S a2~ B - ~ s @ cc 1 ® -~ )55 ld -~

Stop Video Security Participants Chat Share Screen Polls Record Live Transcript Breakout Rooms Reactions Apps Whiteboards More

_clap love

N2 -

yes no slower faster
v X 144 >>

hand

W Raise Hand




anomalous behaviors

disappear after 10s counted too
clear feedback: ‘ - B ' .
all but these Q X\ < mutually disjoint

v " mutually disjoint too!

counted U Raise Hand

often left up mistakenly



can we do better?

4

v X <« >> »

¥ Raise Hand

goals
break the behavior into a small set of concepts
use familiar concepts whenever possible

make each concept simple, robust & understandable
leave some flexibility to synchronizations



my take: splitting into coherent concepts

+ )

- a @ 0 \ familiar
& g heaction concept

familiar
concept

¥  Raise Hand




Presence Chat Reaction Feedback

i Just right
Request to speak || Watching/listening Other emoj ust rig

Speaking I’'m away Audience Recent emoji Slow down Speed up

I B 1 | [I6 N 241N 9 )

V[S|©|m] [Eveyoner | hore.. *©»



takeaways




3 key aspects of concept design

vh

XA

~ \

purpose abstraction separation
asking why focus on behavior independent parts




/tutorials 20 tutorials on concept design

/studies case studies
/subscribe sign up to stay in touch
/ask concept design forum

essenceofsoftware.com



discussion

what helps?

how can I help you going forward?
what materials or tools would help?

which aspects of concept design
have you found most useful?
most challenging?

next steps

happy to meet with you informally
talk about file sync, eg



a code-level
explanation




let’s look at an example: hacker news

4 Jackson structured programming (wikipedia.org) Post Session

106 points by haakonhr 63 days ago | hide | past | favorite | 69 commel...

Upvote Favorite

a uamemcnvulas 63 days ago [-]

. . yu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
user: danielnicholas

created: 63 days ago | 1'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing « | ‘uctures can be solved very systematically. HTDP addresses this class,
DuL pases oue suucwure oy on input structure; JSP synthesized i Comment It.

- The Karma e archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them

o

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with

events rather than objects.
[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A 0b-nix 63 days ago [—]
... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.



let’s build it!

class User { class Post {
String name; User author;
String password; String body;
User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n,p) {...} }
}



adding upvoting

class User { class Post {
String name; User author;
String password; String body;

User register (n, p) { ... } Set [User] ups, downs;
User authenticate (n, p) { ... } Post new (a, b) { ... }

} upvote (u) {...}
downvote (u) {... }

}




adding karma

class User { class Post {
String name; User author;

String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n, p) { ... } upvote (u) { ... }
incKarma (i) { ... } downvote (u) {

bool hasKarma (i) {... } if u.hasKarma (10) ...}

} }




adding commenting

class User { class Post {
String name; User author;
String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Seq [Post] comments;

User authenticate (n, p) { ... } Post new (a, b) { ... }

incKarma (1) { ... } upvote (u) { ... }

bool hasKarma (1) { ... } downvote (u) {

} 1f u.hasKarma (10) ...}
addComment (c) { ...}

}




what's wrong with this code?

class User { class Post {

String name; User author; User authentication
String password; String body; .
int karma; Set [User] ups, downs; Posting
User register (n, p) { ... } Seq [Post] comments; ,
User authenticate (n, p) { ... } Post new (a, b) { ... } Upvoting
inckarma (1) { ... } upvote (u) { ... } ,
bool hasKarma (i) { ... } downvote (u) { Commenting
} 1f u.hasKarma (10)
addComment (c) { ... } Karma
}
lack of separation classes are not reusable
Post class contains posting, Post class won't work in an app
commenting, upvoting, karma that doesn't have karma points
dependence can't be built independently
Post class calls User class to build Post class, need User class

to get karma points to have been built already



a long history of fixes for OOP's conflation

I Transform-Component
ASPECT-ORIENTED
SOFTWARE DEVELOPMENT . .

Collision-Component

shape CollisionShape

WITH USE CASES

all

IVAR JACOBSON (Collector) T mask CollisionMask
PAN-WEI NG
. - . —[|:|
worklng W‘th Objftts -1 3 Position
(Camera) float Time
Lifetimi mponen
with Pot Wailg and Odd Anle Lehne float Time

Material-Component
shader Shader
color Color0
color Colorl

Aspect-oriented programming

Kiczales et al (1997) Entity-component system

Scott Bilas et al (2002)

Role-oriented programming
Reenskaug et al (1983)



concepts: modularizing user-facing functions

c?\)/lncept User { | concept Post [U] { | syncs hold
ap [User, String] name; Map [Post, U] author;
: .7 : . cross concept
Map [User, String] password; Map [Post, URL] url; tunctionalit
User register (n, p) {... } Post new (a, u) { ... } Y
}Jser authenticate (n, p) { ... } } when
Web.request (downvote, u, 1)
concept Upvote [U, I { where
concept Karma [U] { Map [U, I] ups, downs:; Karma.hasKarma (u, 20)
Map [U, Int] karma; upvote (u’ '|) { } then
incKkarma (u,1) { ... } downvote (u, i) { ... } Upvote.downvote (u, 1)

nasKarma (u, 1) { ... } )

concept Comment [U, T] {
Map [Comment, U] author;
Map [Comment, T] target;
Map [Comment, String] body;
Commentnew (a, t,b) {... }

}

concerns coupling is
now cleanly gone: refs are
separated  polymorphic




User
actions

User
database

a new architectural style

mediator
syncs
concepts

Post Karma
actions actions

Post Karma
database database

Upvote
actions

Upvote
database

no

dependencies
between
concepts!

dependencies
on lower layers
allowed



