
Daniel Jackson · Autodesk Online Workshop · June 2025

concept design
part 3: modularity

de/composition:
design is breaking up

& putting together

teapot

handle

lid

spout

body

pouringholding

brewing

keeping hot

decomposing into parts with purposes

how does decomposition help?

reuse
build on experience

reuse across suite too

easier for users
identify familiar parts
learn what you need

design focus
separate concerns
drive by purposes

incremental work
division of labor

exploiting AI

the two watchmakers

incremental work
division of labor
steady progress

Herb Simon, The Architecture of Complexity (1962)

cartoon by ChatGPT

reuse
build on experience

reuse across suite too

how unique is it?

no other app is the same as HackerNews

HackerNews = Post + Comment + Upvote + Karma + …

but its concepts are mostly identical to the concepts in other apps

Dijkstra: separation of concerns

Edsger Dijkstra, On the role of scientific thought (EWD447, 1974)

design focus
separate concerns
drive by purposes

modularity
3 criteria

defining modularity

non-conflation
a single module doesn’t

conflate unrelated functions

separated: not conflated

conflated

non-fragmentation
a single module contains

all of a function’s behavior

complete: not fragmented

fragmented

independence
one module doesn’t

rely on another

independent

dependent

check your understanding

A concept in a design app lets users create projects
that assemble models and track their changes over time.

Which modularity criterion is this likely to violate? (pick one)
(a) Completeness, because it should also include the ability to edit models

(b) Independence, because modifications of models in other concepts will affect this one
(c) Separation, because it mixes purposes related to versioning and aggregation

synchronization
how to decouple

suppose I want this behavior:
you can’t downvote an item

until you’ve received
an upvote on your own post

concept Upvote

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

purpose privilege good users

concept Karma

state
set of users each with
 karma points (an integer)

actions
reward (u: User, r: Int)

define a new concept!
a hint: not just used by Upvote

purpose rank items by popularity purpose share content

concept Posting

state
a set of posts each with
 a body (text)
 an author (user)

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)

could just modify Upvote
why is this bad?

adding application-specific functionality

concept Web

actions
request (…)

actions
reward (u: User, r: Int)

concept Upvote

concept Karma

when Web.request (downvote, u, i)
where u has >= 20 points in Karma
then Upvote.downvote (u, i)

composing concepts with synchronizations

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)

concept Posting

when Upvote.upvote (u, i)
where author of i is u’ in Posting
then Karma.reward (u’, 10)

state
set of users each with
 a number of karma points

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

state
a set of posts each with an author

concept Upvote concept Karma concept Postingconcept Web

reward (Alice, 10)

downvote (Alice, p2) Alice has >= 20 karma

create (Alice, …) -> p1

author of p1 is Alice

upvote (Carol, p1) reward (Alice, 10) author of p1 is Alice

create (Bob, …) -> p2

synchronization viewed over traces

request (downvote, Alice, p2)

upvote (Bob, p1)

not a call
concepts are
decoupled

each concept
executes a
valid trace

concepts stay
largely

application
independent

composition uses
event sync from

Hoare’s CSP

not a new idea

mediator pattern
subject of

Sullivan’s thesis

an architectural view of concept composition

conflated &
incomplete

modules

dependencies
between
modules

familiar,
separated

& complete
modules

mediated
control & data

conductor
coordinatesapp-specific

details

icons by Luis Prado & Zach Bogart, Noun Project

standard software development concept-based software development

enforcing
independence

how concepts do not interact

Upvote

Post

Karma

upvote
reads

author
from Post
and calls
reward in

Karma

concept never
call each other’s actions

read or write each other’s state
share mutable composite objects

a data model
perspective

a data model for hacker news

User

Post

favorites

Comment

target

Email

Session

user

email password

Password

Int

karma

Vote
by

for

author Item

Textbody

Up Down

users who are authors
are the same set of users

who have emails

highlighting the entities

User

Post

favorites

Comment

target

Email

Session

user

email password

Password

Int

karma

Vote
by

for

author Item

Textbody

Up Down

User

data models for concepts

User
Post

favorites

Comment
target

Email

Session

user

email password

Password

Int

karma

Vote
by

for

author

Up Down

Item

User

User Item

Text Text

body body

User User

author

Item

User
Karma

Session

Favorite

PasswordAuth

Upvote

Posting Commenting

Item is generic
could be anything

(eg, Post, Comment)

User is generic too
could be anything

(userid, IP, Mac address)

Users are created in this
concept and shared with
other concepts by syncs

listing the generic types as parameters of the concept

purpose privilege good users

concept Karma [User]

state
set of users each with
 karma points (an integer)

actions
reward (u: User, r: Int)

purpose share content

concept Posting [User]

state
a set of posts each with
 a body (text)
 an author (user)

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)

concept Upvote [User, Item]

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

purpose rank items by popularity

state
set of votes each with
 a user the vote is by
 an item the votes is for
 whether Up or Down

this means Upvote is
generic with respect to
the User and Item types

check your understanding

In what key respect is data modeling in concept design different? (select all that apply)
(a) Concept design decomposes the data model by functionality

(b) Concept design introduces the idea of generic types from programming into data models
(c) Concept design distinguishes entities from values

modularity example
restaurant reservations

actions
 createSlot (t: Time)
 ensures creates a fresh slot & associates with time t
 reserve (u: User, t: Time): Reservation
 requires some slot at time t not yet reserved
 ensures creates & returns a fresh reservation
 associates it with user u and the slot
 seat (r: Reservation)
 requires r is a reservation for about now
 ensures mark r as seated

state
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved
 whether seated

principle the restaurant makes slots
available at various times; a diner
reserves for a particular time, and
then can be assured of being seated
at that time

concept RestaurantReservation [User]

purpose reducing wait time for tables last time, one module
focused on one aspect: reservations

this time, whole system
how to organize variety of functions

main areas of function
identifying users
sending confirmations & reminders
punishing repeat no-shows
laying out tables in dining room
reserving based on party size
defining shifts with different layouts
…

some easy-ish design issues

identifying users
support standard password access & just email/phone
UserAccount concept to track users through password creation
UserPassword concept to manage password access
Capability concept to generate obscure reservation references?

sending confirmations & reminders
Notification concept holds contact preferences, tightly sync’d
Reminder concept, because reminders are different

punishing repeat no-shows
Karma concept debit action, sync’d with noShow action

laying out tables in dining room
FloorPlan concept backing a nice graphical UI

actions
 createSlot (start: Time)
 reserve (u: User, t: Time): Reservation
 cancel (r: Reservation)
 noShow (r: Reservation)

state
slots with start times
reservations with user, slot

concept RestaurantReservation [User]

actions
 configureTables (…)

state
tables with
 position and min/max party sizes

concept FloorPlan

when Web.request (reserve, user, time, party)
where
 slot for table at time (in RestaurantReservation)
 party in range for table (in FloorPlan)
then
 RestaurantReservation.reserve (user, slot, party)

actions
 createSlot (start: Time, t: Table)
 reserve (u: User, s: Slot, party: int): Reservation

state
slots with tables and start times
reservations with user, slot, party size

concept RestaurantReservation [User, Table]

why does reserve action now take slot?
because need to pick based on floor plan

why is Table generic for RestaurantReservation?
because it doesn’t know anything about tables

reserving based on party size

turn control in Open Table

actions
 configureTables (…) : FloorPlan

state
floor plans with tables, tables with
 position and number of seats

concept FloorPlan

actions
 createSlot (start: Time, t: Table)
 reserve (u: User, s: Slot, party: int): Reservation
 cancel (r: Reservation)
 noShow (r: Reservation)

state
reservations with user, slot, party size

concept RestaurantReservation [User, Slot]

when Web.request (reserve, user, time, party)
where
 slot for table at time with party (in Shift)
then
 RestaurantReservation.reserve (user, slot, party)

why does Shift now manage slots?
because of shift-specific functions

(eg, “turn time by party size”)

shifts with different layouts

actions
 setupShift (…)
 …

state
shifts with times, floor plan, slots
slots with times, min/max party, table

concept Shift [FloorPlan, Table]

what concept design is and isn’t

not a magic potion
helps control complexity
not eliminate completely

a framework/language
for structuring designs

exploring collaboratively

purposes
& conflation

P1 C1

P2 C2

specificity
purposes:concepts are 1:1

P1 C1

C2

redundancy
>1 concept per purpose

P1 C1

P2

overloading
>1 purpose per concept

a concept design principle

state
a set of users each with
 a username
 a password
 an email address
 a phone number
 first and last names
 profile picture

state
a set of users each with
 a username
 a password
 an email address
 a phone number
 first and last names
 profile picture

overloading leads to conflation

purpose 1 purpose 2

conflated:
two purposes

concept UserAccount

purpose ????

concept Password

purpose authenticate users

state
a set of users each with
 a username
 a password

concept Notification [User]

purpose notify users

state
a set of users each with
 an email address
 a phone number

concept Profile [User]

purpose share user info

state
a set of users each with
 first and last names
 profile picture

overloading examples from my book

Epson’s PaperSize concept

Fujifilm’s ImageSize concept

Git’s Commit concept

Facebook’s Reaction concept

conflation example:
reactions in Zoom

clap

yes faster away

hand

Zoom’s reactions

no slower

love

disappear after 10s

often left up mistakenly

clear feedback:
all but these

mutually disjoint too!

mutually disjoint

counted

counted too

anomalous behaviors

can we do better?

goals
break the behavior into a small set of concepts
use familiar concepts whenever possible
make each concept simple, robust & understandable
leave some flexibility to synchronizations

Reaction

Presence

FeedbackPoll

familiar
concept

familiar
concept

my take: splitting into coherent concepts

ReactionPresence FeedbackChat

takeaways

3 key aspects of concept design

purpose
asking why

abstraction
focus on behavior

separation
independent parts

essenceofsoftware.com

/tutorials

/studies

/subscribe

/ask

20 tutorials on concept design

case studies

sign up to stay in touch

concept design forum

discussion

what helps?
how can I help you going forward?
what materials or tools would help?

which aspects of concept design
have you found most useful?
most challenging?

next steps
happy to meet with you informally
talk about file sync, eg

a code-level
explanation

Session

Comment

FavoriteUpvote

Karma

Post

let’s look at an example: hacker news

let’s build it!

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

adding upvoting

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

adding karma

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

adding commenting

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

what’s wrong with this code?

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

Posting

Upvoting

Commenting

Karma

User authentication

lack of separation
Post class contains posting,

commenting, upvoting, karma

dependence
Post class calls User class

to get karma points

classes are not reusable
Post class won’t work in an app
that doesn’t have karma points

can’t be built independently
to build Post class, need User class

to have been built already

a long history of fixes for OOP’s conflation

Aspect-oriented programming
Kiczales et al (1997)

Role-oriented programming
Reenskaug et al (1983)

Entity-component system
Scott Bilas et al (2002)

concepts: modularizing user-facing functions

concept User {
 Map [User, String] name;
 Map [User, String] password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
}

concept Post [U] {
 Map [Post, U] author;
 Map [Post, URL] url;
 Post new (a, u) { … }
}

concept Karma [U] {
 Map [U, Int] karma;
 incKarma (u, i) { … }
 hasKarma (u, i) { … }
}

concept Upvote [U, I] {
 Map [U, I] ups, downs;
 upvote (u, i) { … }
 downvote (u, i) { … }
}

concept Comment [U, T] {
 Map [Comment, U] author;
 Map [Comment, T] target;
 Map [Comment, String] body;
 Comment new (a, t, b) { … }
}

when
 Web.request (downvote, u, i)
where
 Karma.hasKarma (u, 20)
then
 Upvote.downvote (u, i)

concerns
now cleanly
separated

coupling is
gone: refs are
polymorphic

syncs hold
cross concept
functionality

a new architectural style

Post
actions

Post
database

Karma
actions

Karma
database

Upvote
actions

Upvote
database

User
actions

User
database

mediator
syncs

concepts

no
dependencies

between
concepts!

dependencies
on lower layers

allowed

