
Daniel Jackson · Autodesk Online Workshop · June 2025

concept design
part 2: behavior

on details

The details are not details. They make the design. Charles Eames

what kind of behavioral details?

details to include
steps the user takes

system responses to the user
data the user gives & gets

details to exclude
coding & algorithmic details
distribution, replication, etc

internal steps

buy a book
book gets delivered
address, arrival estimate

order id has checksum
orders on separate server
request to warehouse

also UI independent
layout & styling of pages

navigation between pages
“micro-steps”

for online bookstore, eg

UI-dependent questions: important but not conceptual

should available
slots be red?

is this helpful?

how many steps
to enter data?

why postpone UI-dependent details?

they’re a lot of work
we need to tend to

more basic things first

they can be a distraction
color of slots before we’ve

decided that we have slots?

want to judge a UI
projects concepts well?

then need pure concepts

what this doesn’t mean
can’t sketch UI ideas

during concept design
often helpful to concretize

shared understanding
between UX & engineering

capturing the overlap

which steps are concept actions?

user model
may be simpler
than the full
concept model

user’s
model

UXer’s
model

coder’s
modelconcept

model

many models playing different roles

a full example
a reservation concept

how to design a concept

pick a name
specific to function
but for general use

describe purpose
why design or use it?
value to stakeholders

tell story
a simple scenario
of how it’s used

list actions
by user or system
key steps, not UI

specify state
what’s remembered
enough for actions

pick a name
specific to function
but general enough

RestaurantReservation

OpenTableReservation

Restaurant

picking a name

Reservation

describing a purpose

describe purpose
why design or use it?
value to stakeholders

reducing wait time for tables

maximizing use of available tables

making money for reservation service

tracking occupancy patterns

telling the story

tell story
a simple scenario
of how it’s used

the restaurant makes
slots available at various

times; a diner reserves for
a particular time, and

then can be assured of
being seated at that time

listing actions

list actions
by user or system
key steps, not UI

select date
select time

click reserve

no! these are
all low-level
UI interactions

login
search for restaurant

review restaurant

no! these belong
to other concepts

createSlot

reserve

seat

cancel

noShow

deleteSlot

what other actions
might be needed?

the restaurant makes
slots available at various

times; a diner reserves for
a particular slot, and then
can be assured of being

seated at that time

let’s return to our
story for hints:

defining action arguments

createSlot

reserve

seat

createSlot (t: Time)

reserve (u: User, t: Time): Reservation

seat (r: Reservation)

cancel

noShow

deleteSlot

cancel (r: Reservation)

noShow (r: Reservation)

deleteSlot (s: Slot)

devising the state

specify state
what’s remembered
enough for actions

a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved

reserve (u: User, t: Time): Reservation
requires
 some slot at time t not yet reserved
ensures
 creates & returns a fresh reservation
 associates it with user u and the slot

defining the actions

createSlot (t: Time)
ensures
 creates a fresh slot
 associates it with time t

seat (r: Reservation)
requires
 r is a reservation for about now
ensures
 // oops!

actions

 whether seated

mark r as seated

createSlot (t: Time)

reserve (u: User, t: Time): Reservation

seat (r: Reservation)

a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved

state

“precondition”
 what’s true of state before

“postcondition”
relates state after to before

reserve (u: User, t: Time): Reservation
requires some slot at time t not yet reserved
ensures creates & returns a fresh reservation
 associates it with user u and the slot

seat (r: Reservation)
requires r is a reservation for about now
ensures mark r as seated

createSlot (t: Time)
ensures creates a fresh slot
 associates it with time t

actionsstate
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved
 whether seated

s0 July 4, 2025 at 7:00pm

slot time

res user slot seated

createSlot (July 4, 2025 at 7pm) reserve (u1, July 4… 7pm): r0

r0 u1 s0 FALSE
res user slot seated

s0 July 4, 2025 at 7:00pm

slot time

r0 u1 s0 TRUE
res user slot seated

s0 July 4, 2025 at 7:00pm
slot time

res user slot seated

initially

slot time

seat (r0)

putting it all together

actions
 createSlot (t: Time)
 ensures creates a fresh slot & associates with time t
 reserve (u: User, t: Time): Reservation
 requires some slot at time t not yet reserved
 ensures creates & returns a fresh reservation
 associates it with user u and the slot
 seat (r: Reservation)
 requires r is a reservation for about now
 ensures mark r as seated

state
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved
 whether seated

principle the restaurant makes slots
available at various times; a diner
reserves for a particular time, and
then can be assured of being seated
at that time

concept RestaurantReservation

purpose reducing wait time for tables

heuristics
for states & actions

do you have enough actions?

is purpose/value delivered?
note that being in the state may be enough

have you covered the whole life cycle?
is there an initial setup? a winding down?

are there ways to undo previous actions?
or to compensate if erroneous?

do all nouns have create, update, delete?
for associated state?

concept Reservation
actions reserve…

seat action?

create slots?

unseat?
cancel reservation?

change reservation?

do you have a rich enough state?

can you support all your actions?
determine if allowed, and generate results

should you track history?
remember completions, deletions, undos?

what info about action occurrence?
maybe also who did it? when?

concept Reservation
actions createSlot, reserve, cancel,
seat, unseat, no-show, …

table sizes?

retain after seat?

by vs. for?
time of reservation?

check your understanding

How are concept actions and user interface interactions related? (pick one)
(a) Every interaction in the UI corresponds to a concept action

(b) Every concept action must be represented as a button or input in the UI
(c) A concept action can comprise a whole sequence of UI interactions

are concepts
modal?

a modal concept: merchandise return

requestReturn

receiveRMA

item received

request sent

RMA received

returnItem

item returned

credit granted

credit

very constrained order of actions

few deviations (eg, for canceling)

user knows what mode they’re in

Amazon shows you the steps

target of action often implicit

a “noun and verbs” concept: social media chat

very free order of actions

options at every step

user thinks of things, not modes

post

edit delete

chatting
target of action explicit

edit (post23, …)

verb noun

but are they really so different?

post

edit

post exists

post edited

delete

social media post
has a lifecycle

with modes too

requestReturn

receiveRMA

item received

request sent

RMA received

returnItem

item returned

credit granted

credit

which item is
returned is in
the QR code

returnItem (item23)

edit (post23, …)

in modal interactions
target may be present

in the context

takeaways

cancelReservation (r: Reservation)
requires
 r is a reservation
ensures
 removes reservation r

arguments of actions
are “nouns” and context

strength of preconditions
determines how modal

concept design encourages
less modal interactions

because concepts run in parallel
& are unconstrained until sync’d

traces
action histories

defining a concept without using states

actions
register (n, p: String)

login (n, p: String): Session
logout (s: Session)

a password session concept

concept PasswordSession

purpose authenticate users
for extended period

principle after a user
registers with a name

and password, they can
login with that same
name and password
(and if they enter the

wrong password, they
can’t login)

traces: histories of actions

<>
<register (“Alvaro”, “secret”)>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0, logout (s0)>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0, logout (s0), login (“Alvaro”, “secret”): s1>
…

register (n, p: String)
login (n, p: String): Session
logout (s: Session)

actions

traces

<login (“Alvaro”, “secret”): s0>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “foo”): s0>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “foo”): s0, logout (s1)>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0, login (“Alvaro”, “secret”): s0>

non traces

can we define the traces without using states?

allow login (n, p): s0 if prior register (n, p)
 … and no prior login (…): s0 without intervening logout (s0) …

sample trace rules

<>
<register (“Alvaro”, “secret”)>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0, logout (s0)>
<register (“Alvaro”, “secret”)>, login (“Alvaro”, “secret”): s0, logout (s0), login (“Alvaro”, “secret”): s1>
…

some legal traces

when is a register action allowed? allow register (n, p) if no prior register (n, …)

when is a login action allowed?

this gets very complicated very quickly!

action-state specs: a simpler way to define traces

allow login (n, p): s0 if prior register (n, p)
 … and no prior login (…): s0 without intervening logout (s0) …

instead of trace rules:

when is a login action allowed?

actions
 login (n, p: String): Session
 requires some registered user u with name n and password p
 ensures returns some session s not currently active
 and sets user of session s to be u

define actions over states:

state
a set of registered users each with
 a username and a password
a set of active sessions each with
 an associated user

concept PasswordSession

states aren’t just an artifact

in approaches that require invisible states (eg, OOP)
you can define “observer actions”

state
a set of chats each with
 a set of messages
for each message
 the user who sent it
 the date/time sent
 the content of the message

concept GroupChat

in concept design, we assume the state is visible
so can query the concept for all messages in chat c sorted by date/time

getMessagesForChat (c: Chat): seq Message
requires
 c is a chat
ensures
 returns messages in c in date/time order

many of these!
tedious to specify
often artifact of UI

check your understanding

States & actions in concept design … (pick one)
(a) Both describe aspects of what the user experiences

(b) Are not well-suited to noun-&-verb-style interactions
(c) Can be defined independently of each other

state invariants
aka integrity constraints

designing invariants for concepts

state
a set of registered users each with
 a username and a password
a set of active sessions each with
 an associated user

concept PasswordSession

state
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved

concept RestaurantReservation

at most one user with a given username at most one reservation for a given slot

at most one reservation for a given user ?

invariants?

what goes wrong if violated?

classifying states

all states

good states

a safe design

all states

good states

an unsafe design

all states

good states

inductive reasoning strategy

all states

good states

what we want to avoid
reasoning about traces

complicated and tedious!

a better approach
reasoning about steps taken by actions
(1) check that the initial state is good

(2) and no action goes from a good to a bad state

applying inductive reasoning to reservation concept

actions
 createSlot (t: Time)
 ensures creates a fresh slot & associates with time t
 reserve (u: User, t: Time): Reservation
 requires some slot at time t not yet reserved
 ensures creates & returns a fresh reservation
 associates it with user u and the slot
 seat (r: Reservation)
 requires r is a reservation for about now
 ensures mark r as seated

state
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved
 whether seated

concept RestaurantReservation

at most one reservation for a given slot

invariant

check invariant holds in initial state

initially, no reservations

check each action preserves invariant

only the reserve action modifies set of reservations

reserve action’s ensures slot is not reserved

✔

✔

states & data models
getting more precise

simplifying the state

state
a set of slots each with
 the start time (includes date)
a set of reservations each with
 the user who made it
 the slot being reserved

concept RestaurantReservation

r0 u1 s0
res user slot

s0 July 4, 2025 at 7:00pm

slot time

before, we represented like this here’s a simpler, more atomized representation

s0

Slot
r0

Reservation

s0 Ju..
time

r0 u1
user

r0 s0
slot

these are SETS

these are BINARY RELATIONS

u1

User

a diagrammatic form

s0

Slot
r0

Reservation

s0 Ju..
time

r0 u1
user

r0 s0
slot

these are SETS

these are BINARY RELATIONS

u1

User

DateTime

Slot

time

Reservation

slot

User

user

why kind of set is DateTime?
a set of built-in values
what are the values of Slot, eg?
they’re identifiers

about this notation

states can be represented as just sets & binary relations
never need tables with more than two columns

this allows a nice diagrammatic representation
this is the “entity relationship diagram”

there are no objects here
a slot is just an identifier associated with a time etc
not a composite object (but could be implemented as one)

why this model helps
succinct and precise, brings clarity during design
easily translated into code (and database schemas etc)

check your understanding

When a concept has stronger state invariants… (select all that apply)
(a) User behavior will generally be more constrained

(b) The concept will be easier to implement
(c) More input validation will generally be needed

two folder
concepts

a simple folder concept

concept design is fun to learn

…

alvaro

readme

state
a set of folders each with
 a name
 some contents (files or folders)
a set of files each with
 a name
 some body (text)

concept SimpleFolder
Item String

Folder

contents

name

File

Content

body

is-a

diagram introduces a new trick
an arrow for is-a (aka subset)

allowing sets for generalization

what invariants?

state
a set of folders each with
 a name
 some contents (files or folders)
a set of files each with
 a name
 some body (text)

concept SimpleFolder Item String

Folder

contents

name

File

Content

body

no folder contains itself (directly or indirectly)

each file or folder belongs to at most one folder

some root folder contains all others (directly or indirectly)

every file belongs to a folder

some invariants

✔
✔
✔

no two contents of a folder have the same name?
?

concept design is fun to learn

…

alvaro

readme

suppose alvaro shares a file with bjorn

concept design is fun to learn

…

alvaro

readme

bjorn

now the file called “readme”
belongs to two folders!

if Bjorn can rename the file
how to maintain unique names

in Alvaro’s folder?

a version of Google Drive
was exactly like this:

filenames not unique in folder

an alternative design: the Unix directory concept

“alvaro”

“bjorn”

“christen”

concept design is fun to learn

…

“readme”“readme”

state
a set of directories each with
 a set of entries
a set of entries each with
 a name
 an item (directory or file)
a set of files each with
 a body (text)

concept UnixDirectory

the state of the Unix directory concept

Entry

String

Directory

entries

name item

Item File

Content

content

state
a set of directories each with
 a set of entries
a set of entries each with
 a name
 an item (directory or file)
a set of files each with
 a body (text)

concept UnixDirectory

no directory contains itself (directly or indirectly)

each file or directory belongs to at most one directory

some root directory contains all others (directly or indirectly)

every file belongs to a directory

some invariants

no two contents of a directory have the same name

✔
✔
✔

✗
✔

how is this for the user?

“alvaro”

“bjorn”

“christen”

Carl
Karin
Oliver
…

“party”“party”

“invitees”

names unique within a directory
can use paths to identify files & directories

any user can change a name
only need to check uniqueness locally

changing name of shared directory
affects owner’s name sometimes

deletion removes an entry not an item
so might still be reachable!

a fine distinction with major impacts

“alvaro”

“bjorn”

“christen”

concept design is fun to learn

…

“readme”

concept design is fun to learn

…

alvaro

readme

name is property of item
could be factored out
into another concept!

rename acts on item
rename (f: File or Folder, n: String)

name qualifies link
belongs to entry

not to the item itself!

rename acts on directory
rename (f: File or Dir, in: Dir, n: String)

a unix puzzle: what happens when trash is emptied in this case?

“users”

“trash”

“daniel”

“secrets”
bank password is PASSWORD

“secrets”

takeaways

takeaways

state machines
UI-independent model of behavior
modal vs nouns and verbs
traces as action histories
state invariants & inductive reasoning
formalizing state with data models

how detailing behavior helps
raises tricky design questions
exposes complexities that may confuse users
can suggest opportunities for simplification

what you learned today

think about behavior more clearly
states, actions & traces

design concepts in detail
with states and actions

produce behavior outlines
with data model diagrams & action lists

what I hope you can now do

what’s next?

what’s next?

homework #1: post to our Slack group
what one idea did you find most useful, surprising, confusing?

homework #2: post to our Slack group
a state+action model of a concept, from Autodesk or not
(no need to finish it: just make a start so we can see where it’s going)
or, comment on an Autodesk concept in the sandbox

plan for last session
how to break a system into concepts
modularity, purpose and synchronization

