
Daniel Jackson · Autodesk Online Workshop · June 2025

concept design
part 2: behavior

The details are not details. They make the design. Charles Eames

qualities of the language we’re seeking

succinct
densely expressive
also can be distilled

precise
clear & objective

can express details

essential
observable behavior

not UI or code

introducing
state machines

a state machine for user registration and sessions

idle

registered

authenticated

register

login logout

state
status: {idle, registered, authenticated} := idle

a diagrammatic representation
a textual representation

register
requires status = idle
ensures status := registered

login
requires status = registered
ensures status := authenticated

logout
requires status = authenticated
ensures status := registered

actions

traces: histories of action occurrences

idle

registered

authenticated

register

login logout

<>
<register>
<register, login>
<register, login, logout>
…

these are traces:

<login>
<register, logout>

these are not traces:

traces and their states

idle

registered

authenticated

register

login logout

<> [status = idle]
<register> [status = registered]
<register, login> [status = authenticated]
<register, login, logout> [status = registered]
…

each trace results in a state:

why does this matter?
we can synchronize with other machines
“user can create post when authenticated”

a simple puzzle
are there non-empty traces leading to status= idle?
why might this be useful?
how would you change the design?

what if more than one user?

register (username, password: String): User
requires no existing registered user with username
ensures
 create a fresh user with username and password
 add to set of registered users

state
a set of registered users
for each registered user
 a username and a password
a set of active sessions
for each active session
 an authenticated user

login (name, password: String): Session
requires some registered user with username and password
ensures
 create a fresh active session as a result
 associate the matching user with the session

logout (session: Session)
requires the session is active
ensures
 remove the session from the active sessions

why does the login
action return the
session?
because the client
needs it to call
logout!

why not just have
login return the
user instead?
because this design
allows one user to
have two sessions
active

actions

why diagrams no longer help

registered = {}
active = {}

registered = {u1}
active = {}

username = {(u1, “alvaro”)}
password = {(u1, “hello”)}

registered = {u1}
active = {s1}

username(u1) = “alvaro”
password(u1) = “hello”

user (s1) = u1

register (“alvaro”, “hello”): u1

login (“alvaro”, “hello”): s1 logout (s1)

registered = {u2}
active = {}

username = {(u2, “bjorn”)}
password = {(u2, “there”)}

register (“bjorn”, “there”): u2

…

suppose scope of 3
names, users, passwords

how many states?
8 values of each set
64 values of each map
approx 17m states!

defining the state more formally

state
a set of registered users
for each registered user
 a username and a password
a set of active sessions
for each active session
 an authenticated user

why do this?
lets you give a name and a type
more easily translated to code
gateway to nice diagrams

why not do this?
harder for less technical folks to read

informal state declaration

state
registered: set User
username, password: User -> String
sessions: set Session
user: Session -> User

formal state declaration

state
registered: set User
for all registered
 username, password: String
sessions: set Session
for all sessions
 user: User

another possible formalization

a diagrammatic form

state
a set of registered users
for each registered user
 a username and a password
a set of active sessions
for each active session
 an authenticated user

diagram conventions
solid arrow is relation (a set of pairs)
dotted arrow is subset (is-a)

this is a data model
“extended entity-relationship model”

state
registered: set User
username, password: User -> String
sessions: set Session
user: Session -> User

User

String

Session
user

username password

sessions

registered

a diagrammatic representation of the state

registered

String

Session
user

username password

sessions

User

a tighter representation

defining the actions formally

state
registered: set User
username, password: User -> String
sessions: set Session
user: Session -> User

register (n, p: String): User
requires no u: registered | u.username = n
ensures some u: User - registered {registered += u; u.password := p; u.name := n; result := u }

login (n, p: String): Session
requires some u: registered | u.username = n and u.password = p
ensures some s: Session - sessions {sessions += s; s.user = u; result := s }

logout (s: Session)
requires s in sessions
ensures sessions -= s; s.user := none

why do this?
exposes subtle errors
can analyze automatically (eg, with Alloy)

why not do this?
more work and harder for some to read

actions

traces and their states

<> [registered = {} and sessions = {}]
<register (n, p): u > [registered = {u} and u.username = n and u.password = p]
<register (n, p): u, login (n, p): s> [… and s in active sessions and s.user = u]
<register (n, p): u, login (n, p): s, logout (s)> [registered = {u} and …]
…

each trace results in a state, now a rich structure:

<> [no registered and no sessions]
<register (n, p): u > [u in registered and u.username = n and u.password = p]
<register (n, p): u, login (n, p): s> [s in sessions and s.user = u]
<register (n, p): u, login (n, p): s, logout (s)> [s not in sessions]

can assert properties of the state instead:

check your understanding

Which of these is NOT true?
(a) State machines offer a precise but abstract way to describe behavior

(b) State machines are good for all kinds of mechanisms, not just concepts
(c) State machines always terminate eventually

concepts
& objects

a common mistake: concept as object

looks appealing at first
reminiscent of OOP, matches diagram

limits scope of concept to one user
but will this actually work?
do the actions all make sense?

state
username
password
session

register (username, password: String): User
// creates user with name and password and no session

login (name, password: String): Session
// if name and password match,
// creates a session for the user and returns it

logout (session: Session)
// unsets session

actions

idle

registered

authenticated

register

login logout

one per user, augmented with
username, password, etc?

how many“objects” in this concept?

register (username, password: String): User
requires no existing registered user with username
ensures
 create a fresh user with username and password
 add to set of registered users

state
a set or registered users
for each registered user
 a username and a password
a set of active sessions
for each active session
 an authenticated user

login (name, password: String): Session
requires some registered user with username and password
ensures
 create a fresh active session as a result
 associate the matching user with the session

logout (session: Session)
requires the session is active
ensures
 remove the session from the active sessions

this concept creates
users and sessions
unlike OOP classes,
concepts not limited
to one type of object

also
concepts capture
relationships
between objects

actions

thoughts on OOP (for now, more later)

a great framework for programming
an effective way to organize code

the key idea of OOP
model computation as collection of objects
“unary” methods mutate object state
objects reference and call each other

can be limiting for coding
why people use functional languages, eg

even less applicable in design work
“unary methods on single objects”
not a helpful way to describe behavior
worse, conflation & fragmentation (later)

x.doA (…)

y.doB (…)

x

y

check your understanding

Which correctly relates objects to concepts?
(a) Typically, a system will have more concepts than object classes

(b) Concepts are expressed in terms of objects, so an OOP implementation is preferred
(c) The way objects encapsulate their state is a coding detail ignored in concept design

three
examples

what the examples teach

group chat (WhatsApp)
how defining the state helps you explore tricky behaviors

folder (Unix, Dropbox, etc)
how state structure leads to unexpected behaviors

file synchronization (Google Drive, Dropbox, etc)
how to model a distributed system
defining actions with behavior that isn’t fully specified
implementing states in a clever way

chat concept
in WhatsApp

group chat concept in WhatsApp

some features shown here
sent & received messages
replies to messages
deleting messages

why might group members
see different messages?
only see messages when member
you can “delete for me”

the state of group chat

Membership

User

Chat

memberships

user
sent,
received

Message

String

text

sentBy replyTo

state
a set of chats
for each chat
 a set of memberships
for each membership
 a user who is the member
 a set of sent messages
 a set of received messages
for each message
 the user who sent it
 the text content
 message it replies to [opt]

concept GroupChat

why memberships vs.
users as members?
user has different
messages in each chat

why sentBy if have
user’s sent messages?
user may have deleted
message others still see

what actions are missing?
create, delete chat
leave, rejoin

join (user: User, chat: Chat)
requires no existing membership for user
ensures
 adds membership for user with no sent/received messages

state
a set of chats
for each chat
 a set of memberships
for each membership
 a user who is the member
 a set of sent messages
 a set of received messages
for each message
 the user who sent it
 the text content
 message it replies to [opt]

post (user: User, chat: Chat, text: String)
requires user is a member of the chat
ensures
 adds a message from user with given text
 to this user’s sent messages, and to the received messages
 of all other users who are currently members of the chat

deleteForMe (user: User, message: Message, chat: Chat)
requires message is in user’s sent messages for chat
ensures
 removes message from user’s sent messages

actionsconcept GroupChat

actions for group chat

folder concept
in Unix

Bella DropboxAva Dropbox

Bella Party

Bella Plan

Bella Party

how folders actually work (in Dropbox, Unix, Multics)

Ava Dropbox Bella Dropbox

Bella Party

Bella Plan

how many users believe the folder concept works

directories in unix

state
a set of directories
for each directory
 a set of entries
for each entry
 a name
 an item (file or directory)
for each file
 the content

concept UnixDirectory

Entry

String

Directory

entries

name item

Item File

Content

content

an example

Entry

String

Directory

entries

name item

Item File

Content

content

“bin”

“etc”

“Users”

“alvaro”

“bjorn”

“christen”

“.zshrc” alias sync="unison filestore"

…

can you map
the state model to the example?

an alternative design

“bin”

“etc”

“Users”

“alvaro”

“bjorn”

“christen”

“.zshrc” alias sync="unison filestore"

…

cases to consider
a file with >1 name?
two files in a dir with same name?
a file belonging to >1 dir?

alias sync="unison filestore"

…

Users

alvaro .zshrc

identity and naming
same identity if name changes?

a unix puzzle: what happens when trash is emptied?

“users”

“trash”

“daniel”

“secrets”
bank password is PASSWORD

“secrets”

check your understanding

Which is true of the Unix directory concept?
(a) The name of a file is one of its (modifiable) metadata properties

(b) Every file or directory has a single, unique pathname
(c) Deleting a file removes a directory entry, not the file itself

file sync concept
Box, Drive, etc

file synchronization concept

initially same

modify

synchronize

same again

modify

synchronize

conflict, fails

modify

file sync concept state & actions

initially same

modify

synchronize

same again

state
a set of filenames
for each filename
 the previous contents of the file
 the contents in system A
 the contents in system B

concept FileSynchronizer

modify (system: System, name: Name, contents: Contents)

actions

synchronize (name: Name) : {success, conflict}
ensures
 if returns success and contentsA (name) = previous (name)
 then contentsA (name) := contentsB (name)
 elseif returns success and contentsB (name) = previous (name)
 then contentsB (name) := contentsA (name)
 else returns conflict

why is this impractical?
storage? computation?

state is distributed

partial spec

an implementation

modify

synchronize

same again

state
a set of filenames
the date of the last sync
for each filename
 the contents in system A
 the date last modified in A
 the contents in system B
 the date last modified in B

concept FileSynchronizer

actions

synchronize (name: Name) : {success, conflict}
ensures
 if B modified after last sync and A not modified after last sync
 then contentsA (name) := contentsB (name); return success
 elseif A modified after last sync and B not modified after last sync
 then contentsB (name) := contentsA (name); return success
 else returns conflict

state
a set of filenames
for each filename
 the previous contents of the file
 the contents in system A
 the contents in system B

abstract state

9am

9am 10am

11am11am

heuristics
for states & actions

not all user interface “actions” are concept actions

close
participants

send love

open
reactions

end
call

end
call

do you have enough actions?

is purpose/value delivered?
note that being in the state may be enough

have you covered the whole life cycle?
is there an initial setup? a winding down?

are there ways to undo previous actions?
or to compensate if they were erroneous?

do all objects have create, update, delete?
for associated state, not literally objects

concept Reservation
actions reserve…

seat

(set availability)

unseat party
cancel reservation

change reservation

applying action heuristics to GroupChat

is purpose/value delivered?
note that being in the state may be enough

have you covered the whole life cycle?
is there an initial setup? a winding down?

are there ways to undo previous actions?
or to compensate if they were erroneous?

do all objects have create, update, delete?
for associated state, not literally objects

concept GroupChat
actions
 join group
 post message

create group
delete group

delete post
leave group

edit post
add member
remove member

applying action heuristics to FileSync

is purpose/value delivered?
note that being in the state may be enough

have you covered the whole life cycle?
is there an initial setup? a winding down?

are there ways to undo previous actions?
or to compensate if they were erroneous?

do all objects have create, update, delete?
for associated state, not literally objects

concept FileSync
actions
 modify file
 synchronizefirst time sync

disconnect?

revert?

create file or folder
delete file or folder

do you have a rich enough state?

can you support all your actions?
determine if allowed, and generate results

should you track history?
remember completions, deletions, undos?

what info about action occurrence?
maybe also who did it? when?

concept Reservation
actions createSlot, reserve, cancel,
seat, unseat, no-show, …

table sizes

retain after seat?

by vs. for?
time of reservation?

takeaways

what you learned today

state machines
how do model behavior with states and actions
a new take on data models: partitioned and action-driven

how detailing behavior helps
raises tricky design questions
exposes complexities that may confuse users
helps you explore the entire design

what you learned today

design concepts in detail
with states and actions

produce behavior outlines
with data model diagrams & action lists

what I hope you can now do

what’s next?

what’s next?

homework #1: post to our Slack group
what one idea did you find most useful, surprising, confusing?

homework #2: post to our Slack group
a state+action model of a concept, from Autodesk or not
(no need to finish it: just make a start so we can see where it’s going)
or, apply heuristics to an Autodesk concept in the sandbox

plan for last session
how to break a system into concepts
modularity, purpose and synchronization

