
Criteria for modularity in concept design

criterion name criterion description evidence example failing

Independence Concepts are fully 
independent of each 
other, and can 
therefore be 
understood and used 
independently of one 
another.

Concept description limits any references 
to context of use to notes.

Concept purpose mentions the way in  which the concept is intended to be used (eg, a payment 
concept whose purpose says “enables payment for magazine subscription”).

Concept does not refer to another concept 
by name.

Concept mentions working in concert with another (eg, session concept says “works with 
authentication concept to provide authenticated sessions”).

Concept does not rely on any properties of 
other concepts.

Concept action “calls” an action of another concept or queries the state of another concept.

All external datatypes are either generic 
parameters or built-in types (such as 
String).

Concept treats arguments as objects that have been constructed elsewhere (eg, takes in a user 
object that is assumed to have a name field).

Completeness Each concept 
provides a complete 
and coherent unit of 
functionality that 
delivers the value 
described in the 
purpose without the 
help of other 
concepts.

Concept functionality covers entire 
lifecycle of the purpose.

Concept doesn’t include actions for set up (eg, defining available slots for reservations), or for 
closing down (eg, no deletion for an account).

Concept embodies real functionality that 
fulfills a compelling purpose.

Concept is a data structure with CRUD actions when purpose calls for richer behavior (eg, 
concept holds contact info for a user but doesn’t include any notification behaviors). 

Concept state is rich enough to support all 
the concept actions.

Concept state is expressed as the instance variables of a single object (eg, password auth 
concept that declares state as username and password, failing to support lookup by username 
needed to check password).

Concept actions are sufficient to provide 
essential functionality to users.

No action to allow users to undo the effects of prior actions (eg, to cancel a reservation).

Separation of 
concerns

Concept does not 
conflate two 
concerns that could 
be broken into 
separate concepts 
that could be reused 
independently of one 
another. 

All components of the state work together 
for a single purpose.

The state admits a factoring into two or more independent parts (eg, a user concept mixes 
preferences and profile fields).

No state component can be dropped 
without compromising essential 
functionality.

The concept gratuitously includes state that is not needed to support actions (eg, a password 
authentication concept that stores, in addition to username and password, the date on which the 
user first joined).

The concept does not include state 
components that could be easily expanded 
into much richer, self-contained structures.

The concept contains references to external objects and stores properties of them that are not 
needed for this concept (eg, references to users along with their names, which would better be 
stored in a separate profile concept).

Concept represents at most one reusable 
and ideally familiar units of functionality.

The concept does not include a subpart that could easily stand by itself, and may even be 
familiar in its own right (eg, user concept includes karma points).

The concept is balanced in the attention to 
behavioral detail.

The concept does not include a fragment of functionality that would in practice grow into a full 
and complex concept of its own (eg, a restaurant reservation concept including some details of 
table sizes, which would in practice belong to a concept that managed table layouts).

1


