
Daniel Jackson · Autodesk, Boston · March 17-18, 2025

designing
concepts

process for designing a concept

pick a name
specific to function
but for general use

describe purpose
why design or use it?
value to stakeholders

tell story
a simple scenario
of how it’s used
including setup

list actions
by user or system
key steps, not UI

specify state
what’s remembered
enough for actions

example:
EventBrite

event is announced

opening link to website

selecting number of tickets

entering name and email

entering name and email (again)

success!

designing the
core concept

process for designing a concept

pick a name
specific to function
but for general use

describe purpose
why design or use it?
value to stakeholders

tell story
a simple scenario
of how it’s used
including setup

list actions
by user or system
key steps, not UI

specify state
what’s remembered
enough for actions

picking a name

pick a name
specific to function
but for general use

Event

EventTicket

EventTicketing

Ticket

describing a purpose

describe purpose
why design or use it?
value to stakeholders

organizing events

raising money for events

issuing tickets for events

managing event attendance

telling the story

tell story
a simple scenario
of how it’s used
including setup

an event organizer
creates an event and

announces it or invites
people to it; they can
then register, and the

organizer can see who
registered; eventually the

people who registered
can attend the event

listing actions

list actions
by user or system
key steps, not UI

getEmailInvitation
openInvitation

selectCount
enterAttendee
enterContact
clickReserve

registerForEvent

this one action
is enough to cover
the entire website
interaction!

no! these are
all low-level
UI interactions

but crucial actions are
missing: how did the
event appear in the first
place? what happens
after registration?

listing actions

list actions
by user or system
key steps, not UI

create event

attend event

an event organizer
creates an event and

announces it or invites
people to it; they can
then register, and the

organizer can see who
registered; eventually the

people who registered
can attend the event

let’s return to our story
for hints about the actions

announce event

register for event

view registrations

separation of concerns
always in back of mind:

does this belong to another
concept? (eg: announce)

formalizing actions

list actions
by user or system
key steps, not UI

create (by: User, on: Date): Event

attend (e: Event, u: User)

register (e: Event, u: User)

separation of concerns
always in back of mind:

does this belong to another
concept? (eg: event details)

specifying state

specify state
what’s remembered
enough for actions

a set of events
for each event
 a date/time
 an organizer
 a set of registrants

separation of concerns
always in back of mind:

does this belong to another
concept? (eg: registrant

name and email)

events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

informally in a programming/spec notation

another way to define state

specify state
what’s remembered
enough for actions

in a programming/spec notation

events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

Event

date Date

User
name String
email Date

organizer

1

registrants

1..

as a graphical data model

putting it all together

concept EventTicket [User]

purpose managing event attendance

principle an event organizer creates an event (and
announces it or invites people to it); they can then register,
and the organizer can see who registered; eventually the
people who registered can attend the event

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User

actions
create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

User is a generic type

specifying the actions

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User

actions

register (e: Event, u: User)
// add u to e.registrants

attend (e: Event, u: User)
// ???

create (by: User, on: Date): Event
// create a fresh event e not in events
// set e.date to on
// set e.organizer to by
// return e

specifying the actions, take two

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User
 attendees: Event -> set User

actions

register (e: Event, u: User)
// add u to e.registrants

attend (e: Event, u: User)
// add u to e.attendees

create (by: User, on: Date): Event
// create a fresh event e not in events
// set e.date to on
// set e.organizer to by
// return e

our final concept

concept EventTicket [User]

purpose managing event attendance

principle an event organizer creates an event (and
announces it or invites people to it); they can then register,
and the organizer can see who registered; eventually the
people who registered can attend the event

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User
 attendees: Event -> set User

actions
create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

completing
the design

some supporting concepts
concept UserProfile

purpose track user details

principle after a profile is created,
you can find the user by email address

state
 user: set User
 first, last: User -> one String
 email: User -> one Email

actions
create (fst, lst: String, e: Email): User
find (e: Email): User

concept EventCatalog

purpose share event descriptions

principle after an event is created,
invitees can read about the details

state
 events: set Event
 title: Event -> one String
 organizer: Event -> one User

actions
create (title: String, u: User): Event
get_details (e: Event): String

concept EventTicket [User]

purpose managing event attendance

principle an event organizer creates
an event (and announces it or invites
people to it); they can then register,
and the organizer can see who
registered; eventually the people who
registered can attend the event

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User
 attendees: Event -> set User

actions
create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

sample synchronizations

concept UserProfile

actions
create (fst, lst: String, e: Email): User
find (e: Email): User

concept EventCatalog

actions
create (title: String, u: User): Event
get_details (e: Event): String

concept EventTicket [User]

actions
create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

when Web.req (create, by, on, title) then
 ec = EventCatalog.create (title, by)
 et = EventTicket.create (by, on)
 et.catalog = ec

when Web.req (register, email, event)
 u = UserProfile.find (email)
then EventTicket.register (event, u)

when Web.req (view, event) then
 ec = event.catalog
 s = EventCatalog.get_details (ec)
 Web.response (s)

when Web.req (register, email, fst, lst, event) then
 u = UserProfile.create (fst, lst, email)
 EventTicket.register (event, u)

synchronizations

when Web.req (create, by, on, title) then
 ec = EventCatalog.create (title, by)
 et = EventTicket.create (by, on)
 et.catalog = ec

when Web.req (register, email, event)
 u = UserProfile.find (email)
then EventTicket.register (event, u)

when Web.req (view, event) then
 ec = event.catalog
 s = EventCatalog.get_details (ec)
 Web.response (s)

when Web.req (register, email, fst, lst, event) then
 u = UserProfile.create (fst, lst, email)
 EventTicket.register (event, u)

EventCatalog

EventTicket

UserProfile

Web
req

register
create

create

create
find

runtime coupling
but no design coupling

or code coupling

app-specific behaviors
often in syncs alone

so concepts stay pure

your turn:
design issues

pick some design issues, discuss & report back

registrant canceling their registration
registrant changing first name

registrant changing email address
organizer changing event time

organizer changing event description
organizer canceling event
limiting capacity for event

requiring payment for registration
notifying registrant of registration by email
reminding registrants of upcoming meeting

requiring ticket to be obtained after registering

eve maliciously registers alice
eve maliciously cancels alice’s registration

eve cancels event

how might you adjust the design?
change existing concepts?

change existing syncs?
add concepts or syncs?

are there more consequences?
is this function desirable?

knock-on effects?
implications for the future?function extensions

security threats

separate tickets:
good or bad?

what’s going on here?

is this honest, or a dark design?

what are the UX
implications?

does it have the claimed
benefits? who really gains?

can you explain this design
in concept lingo?

takeaways

process & concept elements

pick a name
specific to function
but for general use

describe purpose
why design or use it?
value to stakeholders

tell story
a simple scenario
of how it’s used
including setup

list actions
by user or system
key steps, not UI

specify state
what’s remembered
enough for actions

concept EventTicket [User] purpose managing
event attendance principle an event

organizer creates an
event (and announces
it or invites people to
it); they can then
register, and the
organizer can see who
registered; eventually
the people who
registered can attend
the event

state
 events: set Event
 date: Event -> one Date
 organizer: Event -> one User
 registrants: Event -> set User
 attendees: Event -> set User

actions
create (by: User, on: Date):
Event
register (e: Event, u: User)
attend (e: Event, u: User)

two sides of a concept

users’ perspective
a behavioral protocol

software perspective
a “nanoservice”

one page, but many concepts

UserProfile

EventTicket

EventCatalog

Payment

UserAuth

synchronizations

when Web.req (create, by, on, title) then
 ec = EventCatalog.create (title, by)
 et = EventTicket.create (by, on)
 et.catalog = ec

when Web.req (register, email, event)
 u = UserProfile.find (email)
then EventTicket.register (event, u)

when Web.req (view, event) then
 ec = event.catalog
 s = EventCatalog.get_details (ec)
 Web.response (s)

when Web.req (register, email, fst, lst, event) then
 u = UserProfile.create (fst, lst, email)
 EventTicket.register (event, u)

EventCatalog

EventTicket

UserProfile

Web
req

register
create

create

create
find

runtime coupling
but no design coupling

or code coupling

app-specific behaviors
often in syncs alone

so concepts stay pure

what’s next?

what’s next?

a design exercise
you’ll design a concept similar to EventTicket
hands-on experience, always trickier than it seems
but also always more interesting…

