designing
concepts

Daniel Jackson - Autodesk, Boston - March 17-18, 2025

process for designing a concept

EENCN

list actions

by user or system specify state

key steps, not Ul \yhat's remembered
enough for actions

pick a name descrlt?e purpose tell story
why design or use it?

specific to function a simple scenario
value to stakeholders

but for general use of how it's used
including setup

example:
EventBrite

event is announced

MAINE MEDIA

Rockport, Maine

ALUMNI LECTURES

MAINE GOLD TREES: The Art and Alchemy
MEDIA of a Fine Press Collaboration

With Joyce Tenneson and Two Ponds Press
ALUMNI LECTURES

-
o o --""Fn

GOLD TREES: The Art & Alchemy_
of a Fine Press Collaboration
with Joyce Tenneson & Two Ponds Press

Tuesday, March 18, 2025, 1-2 PM ET (Online)

Join us for a conversation between photographer Joyce Tenneson and Ken Shure and Liv
Rockefeller of Two Ponds Press about the creation of GOLD TREES.This brand-new, limited-
edition artist book showcases Tenneson’s photographs, which inspired a series of evocative
poems by writer Claire Millikin. Joyce will discuss the inspiration for the photography and its
connection to her very first museum exhibition 50 years ago. Shure and Rockefeller will share
insights into the fine press publisher's process—where concept, craftsmanship, collaboration,
and artistry come together to transform a book into a work of art.

RSVP today!

Our alumni lectures are free and open to all!

opening link to website

o B
~

-

t\

” g
£ J

; /_{-—' .J*~

GOLD TREES: The Art and Alchemy
of a Fine Press Collaboration
With Joyce Tenneson and Two Ponds Press

=Py ALUMNI LECTURES
TI1%172% A
A k},\/‘!;’-.,\r W ONT ™ »

NULL —

Tuesday, March 18, 2025 e 1:00 pm

Online via Zoom

GET TICKETS

A of

SIGN IN

selecting number of tickets

@\ Maine Media
ALUMNI LECTURE SERIES

Select tickets Your Order

GOLD TREES: The Art & Alchemy of a Fine Free
Press Collaboration with Joyce Tenneson & Bemove
Two Ponds Press

GOLD TREES: The Art & Alchemy of a Fine Attendee 1
Press Collaboration with Joyce Tenneson &
Two Ponds Press

Tuesday, March 18, 2025, 1:00-2:00 pm ET

This virtual event is free and open to the public. Please reserve

your "ticket" to receive the Zoom link.

entering name and email

M\ Maine Media
ALUMNI LECTURE SERIES /A 1A SsIGNIN

Complete Tickets Your Order

lofl

GOLD TREES: The Art & Alchemy of a Fine Free
Press Collaboration with Joyce Tenneson & Bemove
Two Ponds Press
GOLD TREES: The Art & Alchemy of a Fine Press Collaboration with Joyce Daniel Jackson

Tenneson & Two Ponds Press

Attendee 1

Provide the attendee's information

First Name *

Daniel

Last Name *

Jackson

Email Address*

daniel@dnj.photol

Country

United States

Company Name Total Free

Company name
START OVER ’ NEXT

Pronouns

entering name and email (again)

“‘\ Maine Media
ALUMNI LECTURE SERIES /> 10 SsiGNIN

Checkout Your Order

GOLD TREES: The Art & Alchemy of a Fine
Press Collaboration with Joyce Tenneson &

Two Ponds Press
Daniel Jackson

Your Info

First name * Last name *

Daniel Jackson

Email *

daniel@dnj.photol

This is where your receipt and registration will be sent

It's okay to contact me in the future.

This transaction is 100% free of charge

‘ @ Free transaction

Total Free

By clicking Reserve, | agree to the Terms of Service and Privacy
Policy

BACK RESERVE

success!

“‘\ Maine Media
ALUMNI LECTURE SERIES /A O0f SIGNIN

M

Thank You!

A copy of your receipt will be sent to your email shortly.

Charged amount:

$0.00

8 Check your email

Your order details will be emailed to the address provided.

Qb

Questions
Give us a call, or send us an email with your question.

alumni@mainemedia.edu

designing the
core concept

process for designing a concept

BN

list actions

by user or system specify state

key steps, not Ul \yhat's remembered
enough for actions

pick a name descrlt?e purpose tell story
why design or use it?

specific to function a simple scenario
value to stakeholders

but for general use of how it's used
including setup

picking a name

o — Event
—
D o EventTicket

EventTicketing

pick a name
specific to function
but for general use

icket

describing a purpose

&)

describe purpose
why design or use it?

value to stakeholders managing event attendance

organizing events

raising money for events

issuing tickets for events

an event organizer
creates an event and
announces it or invites
people to it; they can
then register, and the
organizer can see who
registered; eventually the

people who registered
can attend the event

telling the story

tell story
a simple scenario
of how it's used
including setup

getEmaillnvitation
openlnvitation
selectCount
enterAttendee
enterContact
clickReserve

no! these are
all low-level
Ul interactions

listing actions

registerForEvent

this one action

is enough to cover
the entire website
Interaction!

but crucial actions are
missing: how did the
event appear in the first

place? what happens
after registration?

list actions
by user or system
key steps, not Ul

let’s return to our story
for hints about the actions

an event organizer
creates an event and
announces it or invites
people to it; they can
then register, and the
organizer can see who
registered; eventually the

people who registered
can attend the event

listing actions

Ccreate event
announce event
register for event
view registrations

attend event

separation of concerns
always in back of mind:
does this belong to another
concept? (eg: announce)

list actions
by user or system
key steps, not Ul

create (by: User, on: Date): Event

formalizing actions

register (e: Event, u: User)

attend (e: Event, u: User)

separation of concerns
always in back of mind:

does t
conce

nis belong to another

dt? (eg: event details)

list actions
by user or system
key steps, not Ul

informally

a set of events
for each event
a date/time
an organizer
a set of registrants

separation of concerns
always in back of mind:
does this belong to another
concept? (eg: registrant
name and email)

specifying state

In a programming/spec notation

events: set Event

date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

specify state
what's remembered
enough for actions

in a programming/spec notation

events: set Event

date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

another way to define state

as a graphical data model

date

Event

Date

registrants

1..

organizer

1

User

specify state
what's remembered
enough for actions

putting it all together

concept EventTicket [User] User is a generic type

purpose managing event attendance

principle an event organizer creates an event (and
announces 1t or invites people to it); they can then register,
and the organizer can see who registered; eventually the
people who registered can attend the event

state
events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

actions

create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

specifying the actions

state
events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User

actions

create (by: User, on: Date): Event

// create a fresh event e not in events
// set e.date to on

// set e.organizer to by

// return e

register (e: Event, u: User)
// add u to e.registrants

attend (e: Event, u: User)

/7222

specifying the actions, take two

state
events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User
attendees: Event -> set User

actions

create (by: User, on: Date): Event

// create a fresh event e not in events
// set e.date to on

// set e.organizer to by

// return e

register (e: Event, u: User)
// add u to e.reqgistrants

attend (e: Event, u: User)
// add u to e.attendees

our final concept

concept EventTicket [User]

purpose managing event attendance

principle an event organizer creates an event (and
announces 1t or invites people to it); they can then reqister,
and the organizer can see who registered; eventually the
people who registered can attend the event

state
events: set Event
date: Event -> one Date
organizer: Event -> one User
registrants: Event -> set User
attendees: Event -> set User

actions

create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

completing

the design

some supporting concepts

concept EventTicket [User] concept UserProfile concept EventCatalog
purpose managing event attendance purpose track user details purpose share event descriptions
principle an event organizer creates principle after a profile is created, principle after an eventis created,

an event (and announces it orinvites you can find the user by email address invitees can read about the details
people to 1t); they can then register,

. state state
and the organizer can see who Jcor- set User events: set Event
registered; eventually the people who . ' (act: U Sty ol :
registered can attend the event rStf ast: User ->one .trmg title: Event -> one String
| email: User ->one Email organizer: Event -> one User

state . .

events: set Event actions actions

date: Event -> one Date create (fst, [st: String, e: Email): User create (title: String, u: User): Event

organizer: Event -> one User find (e: Email): User get_details (e: Event): String

registrants: Event -> set User
attendees: Event -> set User

actions

create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

concept EventTicket [User]

actions

create (by: User, on: Date): Event
register (e: Event, u: User)
attend (e: Event, u: User)

concept UserProfile

actions

create (fst, lst: String, e: Email): User
find (e: Email): User

concept EventCatalog

actions
create (title: String, u: User): Event
get_details (e: Event): String

sample synchronizations

when then

ec = EventCatalog.create (title, by)
et = EventTicket.create (by, on)
et.catalog=ec

when then
ec = event.catalog
s = Event(Catalog.get_details (ec)
Web.response (s)

when
u = UserProfile.create (fst, lst, email)
EventTicket.register (event, u)

when
u = UserProfile.find (email)
then EventTicket.reqgister (event, u)

then

—0 Web

req

create
register

EventTicket

create

EventCatalog

Create .
find —Q UserProfile
—O0

runtime coupling
but no design coupling
or code coupling

synchronizations

app-specific behaviors
often in syncs alone
SO concepts stay pure

when then

ec = EventCatalog.create (title, by)
et = EventTicket.create (by, on)
et.catalog=ec

when then
ec = event.catalog
s = Event(Catalog.get_details (ec)
Web.response (s)

when
u = UserProfile.create (fst, lst, email)
EventTicket.register (event, u)

when
u = UserProfile.find (email)
then EventTicket.register (event, u)

then

your turmn:
design issues

pick some design issues, discuss & report back

registrant canceling their registration
registrant changing first name
registrant changing email address
organizer changing event time
organizer changing event description
organizer canceling event
limiting capacity for event
requiring payment for registration
notifying registrant of registration by email
reminding registrants of upcoming meeting
requiring ticket to be obtained after registering

function extensions

eve maliciously registers alice
eve maliciously cancels alice’s registration
eve cancels event

security threats

how might you adjust the design?
change existing concepts?
change existing syncs?
add concepts or syncs?

are there more consequences?
is this function desirable?
knock-on effects?
implications for the future?

separate tickets:

good or bad?

what's going on here?

| Eventbrite

W Add required info for Speaking with the State’s Voice
To: dnj@conceptualstrategy.com,
Reply-To: dlab-ops@ucsd.edu

B Inbox - consulting Yesterday at 4:04 PM

& eventbrite

Daniel, don't forget your tickets

To get your tickets, send your organizer a few more details

S /
Payment Answer Get your
successful questions tickets

Add required info

(UPDATES AND ANNOUNCEMENTS)

Important Update:
How Attendees
Access Tickets

BY EVENTBRITE « APR 16 2024

is this honest, or a dark design?

can you explain this design
in concept lingo?

what are the UX
implications?

does it have the claimed
benefits? who really gains?

We've changed how attendees access their tickets to enhance the platform
experience for you and your guests.

Moving forward, attendees will no longer receive PDF tickets via their order
confirmation and reminder emails. Instead, they are directed to their tickets through
Eventbrite.com or the Eventbrite mobile app, where options such as ‘Add to Apple
Wallet’ and saving tickets as images are available.

What are the benefits of using the
Eventbrite app for ticketing?

Convenience for attendees

e |OS device users have the added benefit of adding their ticket to their Apple
Wallet. iOS and Android users can save tickets as an image directly from the app
so they can access their tickets at the door without an internet connection.

e Accessing tickets on the Eventbrite app is also more convenient because
attendees won't have to sift through their inboxes to locate the correct email
with their PDF ticket(s).

Security

e Attendees don't need to worry about lost or stolen physical tickets because their
ticket is stored securely within their account and on their mobile device.

takeaways

O

pick a name
specific to function
but for general use

concept EventTicket [User]

process & concept elements

describe purpose
why design or use it?
value to stakeholders

purpose managing
event attendance

@ B &

tell story
a simple scenario
of how it's used
including setup

principle an event
organizer creates an
event (and announces
1t or invites people to
1t); they can then
register, and the
organizer can see who
registered; eventually
the people who
registered can attend
the event

list actions
by user or system
key steps, not Ul

specify state
what's remembered
enough for actions

actions state

create (by: User, on: Date): events: set Event

Event date: Event -> one Date

register (e: Event, u: User) organizer: Event -> one User

attend (e: Event, u: User) registrants: Event -> set User
attendees: Event -> set User

two sides of a concept

users’ perspective software perspective
a behavioral protocol a “nanoservice”

one page, but many concepts

""“\ Maine Media
ALUMNI LECTURE SERIES /A 1[0 SIGNIN

Checkout Your Order

GOLD TREES: The Art & Alchemy of a Fine
Press Collaboration with Joyce Tenneson &

Two Ponds Press
Daniel Jackson

Your Info

First name * Last name *

Daniel Jackson

Email *

daniel@dnj.photol

This is where your receipt and registration will be sent

It's okay to contact me in the future.

Free transaction
@ This transaction is 100% free of charge

Total Free

By clicking Reserve, | agree to the Terms of Service and Privacy
Policy

BACK RESERVE

—0 Web

req

create
register

EventTicket

create

EventCatalog

Create .
find —Q UserProfile
—O0

runtime coupling
but no design coupling
or code coupling

synchronizations

app-specific behaviors
often in syncs alone
SO concepts stay pure

when then

ec = EventCatalog.create (title, by)
et = EventTicket.create (by, on)
et.catalog=ec

when then
ec = event.catalog
s = Event(Catalog.get_details (ec)
Web.response (s)

when
u = UserProfile.create (fst, lst, email)
EventTicket.register (event, u)

when
u = UserProfile.find (email)
then EventTicket.register (event, u)

then

what’s next?

what's next?

a design exercise

you'll design a concept similar to EventTicket
hands-on experience, always trickier than it seems
but also always more interesting...

