
Daniel Jackson · Autodesk, Boston · March 17-18, 2025

identifying
concepts

an example:
HackerNews

Session

Comment

FavoriteUpvote

Karma

Post

what are the concepts of Hacker News?

familiar concepts with some creative variation

“combinational creativity” [Boden]
familiar elements combined in new ways

for HackerNews, things like
a post has a title and either just a link, or just a question
no comments on a post after 2 weeks, no edits after 2 hours
can’t downvote a comment until your own post upvoted
…

concept Upvote

state
by: Vote -> one User
for: Vote -> one Item
Upvote, Downvote: set Vote
rank: Item -> one Int

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

downvote (u: User, i: Item)
 no downvote exists for i by u
 remove all upvotes for i by u
 add a downvote for i by u
 update the rank of i

DownvoteUpvote

Vote

User

Post

by

Vote

Item
for

Int rank

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

defining a concept in detail

related concepts
Rating, Recommendation, Reaction, …

design variants
downvote as unvote

use age in ranking
weigh downvotes more
various identity tactics

freezing old posts known issues
high votes can promote old content

feedback favors early upvotes
upvoting encourages echo chamber

preventing double votes
typical uses

social media posts
comments on articles

Q&A responses

often used with
Karma, Auth, …

concept: Upvote

concepts as carriers of design knowledge

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

concept Reaction

purpose support quick responses

principle when user selects
reaction, it’s shown to the author
(often in aggregated form)

concept Recommendation

purpose infer user preferences

principle user likes lead to
ranking of kinds of items, thus
which items are recommended

concepts are about semantics, not user interface

your turn: which concepts do behaviors belong to?

Session

Comment

FavoriteUpvote

Karma Post

concepts of Hacker News

reward points only go up

you can’t like a post twice

you need to login every two hours

posts contain just URLs

you can comment on a post or a comment

favorite lists are unbounded

you can’t downvote a post until your own post is upvoted

you can’t edit a post unless you’re logged in as author

some behaviors
belong to one concept

some behaviors
involve more than one

behaviors that involve >1 concept

suppose I want this behavior:
you can’t downvote an item

until you’ve received
an upvote on your own post

concept Upvote

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

purpose privilege good users

concept Karma

state
karma: User -> one Int

actions
reward (u: User, r: Int)
permit (u: User, r: Int)

define a new concept!
a hint: not just used by Upvote

purpose rank items by popularity purpose share content

concept Post

state
author: Post -> one User
body: Post -> one Text

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)
get_author (p: Post): User

actions
reward (u: User, r: Int)
permit (u: User, r: Int)

concept Upvote

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

concept Karma

when
 Web.request (downvote, u, i)
 Karma.permit (u, 20)
then
 Upvote.downvote (u, i)

composition by synchronization

actions
create (u: User, t: Text): Post
delete (p: Post)
edit (p: Post, t: Text)
get_author (p: Post): User

concept Post

when Upvote.upvote (u, i)
 Post.get_author (i) = u’
then
 Karma.reward (u’, 10)

concept Upvote concept Karma concept Post

upvote (Bob, p1) reward (Alice, 10)

upvote (Carol, p1) reward (Alice, 10)

downvote (Alice, p2) permit (Alice, 20)

create (Alice, …) -> p1

get_author (p1) -> Alice

get_author (p1) -> Alice

create (Bob, …) -> p2

synchronizations at runtime

concept Upvote concept Karma concept Post

upvote (Bob, p1) reward (Alice, 10)

upvote (Carol, p1) reward (Alice, 10)

downvote (Alice, p2) permit (Alice, 20)

create (Alice, …) -> p1

get_author (p1) -> Alice

get_author (p1) -> Alice

create (Bob, …) -> p2

key properties

not a call:
decoupled

trace meets
concept spec

app-
independent

app-specific details
mostly in the syncs

shared events
Hoare’s CSP (1978)
occam (1983-1994)

not a new idea

mediator pattern
Kevin Sullivan (1994)
Gang of Four (1994)

concepts vs. objects
(a coding detour)

concepts are not classes

object-oriented programming
a dominant coding paradigm

good for implementing concepts

object-oriented development
objects correspond to real world entities

embody all of their behavior

let’s build HN with objects

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

adding upvoting

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

class Post {
 User author;
 String body;
 Post new (a, b) { … }
}

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) { … }
 }

class User {
 String name;
 String password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 }

adding karma

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 }

adding commenting

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

what’s wrong with this code?

class User {
 String name;
 String password;
 int karma;
 User register (n, p) { … }
 User authenticate (n, p) { … }
 incKarma (i) { … }
 bool hasKarma (i) { … }
 }

class Post {
 User author;
 String body;
 Set [User] ups, downs;
 Seq [Post] comments;
 Post new (a, b) { … }
 upvote (u) { … }
 downvote (u) {
 if u.hasKarma (10) … }
 addComment (c) { … }
 }

Posting

Upvoting

Commenting

Karma

User authentication

no separation of concerns
Post class contains posting,

commenting, upvoting, karma

dependencies between files
Post class calls User class

to get karma points

classes are novel & not reusable
Post class won’t work in an app
that doesn’t have karma points

can’t be built independently
to build Post class, need User class

to have been built already

a different way

concept User {
 Map [User, String] name;
 Map [User, String] password;
 User register (n, p) { … }
 User authenticate (n, p) { … }
}

concept Post [U] {
 Map [Post, U] author;
 Map [Post, URL] url;
 Post new (a, u) { … }
}

concept Karma [U] {
 Map [U, Int] karma;
 incKarma (u, i) { … }
 hasKarma (u, i) { … }
}

concept Upvote [U, I] {
 Map [U, I] ups, downs;
 upvote (u, i) { … }
 downvote (u, i) { … }
}

concept Comment [U, T] {
 Map [Comment, U] author;
 Map [Comment, T] target;
 Map [Comment, String] body;
 Comment new (a, t, b) { … }
}

sync downvote (u, i) {
 Karma.hasKarma (u, 10)
 Upvote.downvote (u, i)
}

need two-way map
target to comment

need a mediator
outside the concept

web apps have this!
called a database

web apps have this!
called a route

concerns
now cleanly
separated

coupling is
gone: refs are
polymorphic

a new way to structure a web app

Post
actions

Post
database

Karma
actions

Karma
database

Upvote
actions

Upvote
database

User
actions

User
database

routes
(action syncs)

backend

no
dependencies

between
concepts!

key lessons: coherence & independence

coherence
concept embodies a unit of reusable function

concept contains all and only that function

example: preventing double voting
Upvote doesn’t call Session to get user

synchronization ensures voter param is user

Upvote Session

Upvote Session

Upvote Session
upvote getUser

Upvote Session
upvote getUser

example: preventing double voting
Upvote stops 2x voting by linking voter to vote

Session ensures voter is the logged in user

independence
each concept can be understood by itself

concepts don’t refer to each other

long history of attempts to fix OOP

Aspect-oriented Programming
Kiczales et al (1997)

Role-oriented Programming
Reenskaug et al (1983)

Entity-component system
Scott Bilas et al (2002)

your turn:
a Twitter/X puzzle

Nov 2, 2015: Twitter changes Favorite (Star) to Like (Heart)

We are changing our star icon for favorites to a heart
and we’ll be calling them likes… We know that at times
the star could be confusing, especially to newcomers.
You might like a lot of things, but not everything can be
your favorite. Twitter press release

your turn: what does heart button do? and what did ML think it did?

?
what concept is this?

concept Upvote
purpose rank items by popularity
principle after upvotes, ranked by num upvotes

concept Bookmark
purpose save items to revisit
principle save then select from private list later

concept Upvote
purpose rank items by popularity

concept Bookmark
purpose save items to revisit

your turn:
RealWorld API

how many concepts can you find in this endpoint?

exercise:
Zoom reactions

clap

yes faster away

hand

Zoom’s reactions

no slower

love

disappear after 10s

often left up mistakenly

clear feedback:
all but these

mutually disjoint too!

mutually disjoint

counted

counted too

anomalous behaviors

functions by reaction type

yes yes, but should probably be no

disjointness of reaction types: my take

yes yes, but should probably be no

redesigning Zoom

what concepts are involved?
can you identify the concepts behind this widget?
separate them more cleanly?
classify into familiar and novel concepts?

can you do better?
how might you change Zoom’s design?
could change UI and behavior for muting, eg

Reaction

Presence

FeedbackPoll

familiar
concept

familiar
concept

my take: splitting into coherent & independent concepts

ReactionPresence FeedbackChat

takeaways

key idea #1: coherence

User
user name

display name
email address

objects tend to
conflate functions

Auth
user name
password
auth email

Profile
biography

display name
email address

Notification
conceptpreferences

phone number
email address

concepts separate
functions

key idea #2: independence

in OOP, method calls
couple classes together

so they can’t stand alone

Post
addComment

delete
upvotePost

User
register

authenticate
changePassword

Upvote
addVote

removeVote
getVotes

Comment
new
edit

delete

Post
create

edit
delete

Comment
create

edit
delete

Upvote
upvote

downvote
getVotes

User
register

authenticate
changePassword

in concept design,
syncs are defined externally
so concepts can stand alone

what’s next?

what next?

designing concepts
getting to the details
defining behavior: states & actions
purposes & principles

