identifying
concepts

Daniel Jackson - Autodesk, Boston - March 17-18, 2025

an example:
HackerNews

what are the concepts of Hacker News?

4 Jackson structured programming (wikipedia.org) Post Session

106 points by haakonhr 63 days ago | hide | past | favorite | 69 commel...

Upvote Favorite

a uamemcnvulas 63 days ago [-]

. . yu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
user: danielnicholas

created: 63 days ago | 1'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing « | ‘uctures can be solved very systematically. HTDP addresses this class,
DuL pases oue suucwure oy on input structure; JSP synthesized i Comment It.

- The Karma e archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them

o

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with

events rather than objects.
[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A 0b-nix 63 days ago [—]
... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

familiar concepts with some creative variation

A Jackson structured programming (wikipedia.org)
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you 1 for a Michael Jackson festschrift

5000 “combinational creativity” [Boden]
For those who don't know Jsp, 1 1amiliar elements combined in new ways

- There’s a class of programmin
but bases code structure only o

itically. HTDP addresses this class,

for HackerNews, things like

- There are some archetypal pr d POSt has d @ and eltherJUSt d ||n|<, Q‘JUS’[d queSthn e clashes—and just recognizing
A ol no comments on a post after 2 weeks, no edits after 2 hours

- COrOUtineS (OI' COde tl’anSfOI‘m Canlt downvote a COmment until YOur Own post upvoted one StrUCture. It'S Why I'eal
iterators (with yield), which offe nethod.

- The idea of viewing a system: » JSD) with a long-running process
for each real-world entity. This storming for DDD) that began with

events rather than objects.

[0] https://groups.csail.mit.edu

A ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

concept Upvote

purpose rank iten

s by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

state

by: Vote -> one User

for: Vote -> one Item
Upvote, Downvote: set Vote
rank: Item -> one Int

actions
upvote (u: User, 1:

Item)

downvote (u: User, 1: Item)

unvote (u: User, 1:

Item)

defi

ning a concept in detalil

downvote (u: User, i: Item)
no downvote exists foriby u

ren
adc

ove all upvotes for1by u
' a downvote for1by u

upc

ate the rank of 1

Item
for
Vote
A \
by User
Upvote Downvote

concepts as carriers of design knowledge

design variants
downvote as unvote
use age in ranking
weigh downvotes more
various identity tactics
freezing old posts

typical uses
social media posts
comments on articles
Q&A responses

concept: Upvote

related concepts
Rating, Recommendation, Reaction, ...

\/

often used with
Karma, Auth, ...

known issues
high votes can promote old content
feedback favors early upvotes
upvoting encourages echo chamber
preventing double votes

concepts are about semantics, not user interface

concept Upvote concept Reaction concept Recommendation
purpose rank items by popularity purpose support quick responses purpose infer user preferences
principle after series of upvotes principle when user selects principle user likes lead to

of items, the items are ranked by reaction, 1t’s shown to the author ranking of kinds of items, thus
their number of upvotes (often in aggregated form) which items are recommended

This is homework and I'm having a

are the definitions of the objects: Today v

8

o Daniel | think we should organize a
sig Library {

patrons : set Person, software concepts forum.

on_shelves : set Book, +
} S

your turn: which concepts do behaviors belong to?

oo | some behaviors
réward points only go up belong to one concept

Upvote Favorite Session you can't like a post twice

Karma Comment Post you need to login every two hours

concepts of Hacker News posts contain just URLs

you can commentona pOSt or a comment

favorite lists are unbounded

some behaviors

i~volve more than one YOU can't downvote a post until your own post is upvoted

you can't edit a post unless you're logged in as author

behaviors that involve >1 concept

concept Upvote concept Karma concept Post
purpose rank items by popularity purpose privilege good users purpose share content
actions state state
upvote (u: User, 1: Item) karma: User ->one Int author: Post -> one User
downvote (u: User, 1: Item) , body: Post -> one Text
unvote (u: User, 1: Item) actions)
reward (u: User, r: Int) actions
permit (u: User, r: Int) create (u: User, t: Text): Post
suppose | want this behavior: dg!fte (II?’ PESBT ‘
you can't downvote an item edit (p: Post, t: Text)
until you've received get_author (p: Post): User

an upvote on your own post

define a new concept!
a hint: not just used by Upvote

composition by synchronization

when Upvote.upvote (u, i)

Post.get_author (i) =u concept Karma

then
Karma.reward (u’, 10) actions

concept Upvote rewar.d (u: User, r: Int)
when permit (u: User, r: Int)

actions

upvote (u: User, 1: Item)
downvote (u: User, 1: Item)
unvote (u: User, 1: Item)

Webk.request (downvote, u, 1)
Karma.permit (u, 20)

th2n
Upvo*e.downvote (u, i)

concept Post

actions

create (u: User, t: Text): Post
delete (p: Post)

edit (p: Post, t: Text)
get_author (p: Post): User

concept Upvote

upvote (Bob, p1)

upvote (Carol, p1)

downvote (Alice, p2)

synchronizations at runtime

concept Karma

reward (Alice, 10)
reward (Alice, 10)

permit (Alice, 20)

concept Post

create (Alice, ...) -> p1l

create (Bob, ...) -> p2

get_author (pl) -> Alice

get_author (pl) -> Alice

concept Upvote

upvote (Bob, p1)

upvote (Carol, p1)

downvote (Alice, p2)

2
independent

not a call:

decoupled

key properties

concept Karma

reward (Alice, 10)

reward (Alice, 10)

app-specific details

mostly in the syncs

permit (Alice, 20)

concept Post

create (Alice, ...) -> p1l

create (Bob, ...) -> p2

get_author (pl) -> Alice

get_author (pl) -> Alice

trace meets
concept spec

not a new idea

Mediators:
C.A.R.Hoare Easing the Design and Evolution of Integrated Systems
Communicating
Is’reo%ueesnstégl Kevin J. Sullivan

Technical Report 94-08-01

Department of Computer Science and Engineering

University of Washington

CAR HOARE SERES EDITOR

mediator pattern
shared events Kevin Sullivan (1994)

Hoare's CSP (1978) Gang of Four (1994)
occam (1983-1994)

concepts vs. objects
(a coding detour)

concepts are not classes

Polymorphism

Abstraction Inheritance

OOPs
Concepts

Object

Class Encapsulation

object-oriented programming
a dominant coding paradigm
good for implementing concepts

class
Animal

class class class
Lion | Dog | Cat
object-oriented development

objects correspond to real world entities
embody all of their behavior

%

let’s build HN with objects

class User { class Post {
String name; User author;
String password; String body;
User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n,p) {...} }
}

adding upvoting

class User { class Post {
String name; User author;
String password; String body;

User register (n, p) { ... } Set [User] ups, downs;
User authenticate (n, p) { ... } Post new (a, b) { ... }

} upvote (u) {...}
downvote (u) {... }

}

adding karma

class User { class Post {
String name; User author;

String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Post new (a, b) { ... }

User authenticate (n, p) { ... } upvote (u) { ... }
incKarma (i) { ... } downvote (u) {

bool hasKarma (i) {... } if u.hasKarma (10) ...}

} }

adding commenting

class User { class Post {
String name; User author;
String password; String body;
int karma; Set [User] ups, downs;

User register (n, p) { ... } Seq [Post] comments;

User authenticate (n, p) { ... } Post new (a, b) { ... }

incKarma (1) { ... } upvote (u) { ... }

bool hasKarma (1) { ... } downvote (u) {

} 1f u.hasKarma (10) ...}
addComment (c) { ...}

}

what's wrong with this code?

class User { class Post {

String name; User author; User authentication
String password; String body; .
int karma; Set [User] ups, downs; Posting
User register (n, p) { ... } Seq [Post] comments; ,
User authenticate (n, p) { ... } Post new (a, b) { ... } Upvoting
inckarma (1) { ... } upvote (u) { ... } ,
bool hasKarma (i) { ... } downvote (u) { Commenting
} 1f u.hasKarma (10)
addComment (c) { ... } Karma
}
no separation of concerns classes are novel & not reusable
Post class contains posting, Post class won't work in an app
commenting, upvoting, karma that doesn't have karma points
dependencies between files can't be built independently
Post class calls User class to build Post class, need User class

to get karma points to have been built already

concept User {

Map [User, String] name;
Map [User, String] password;
User reqgister (n, p) { ... }

Jser authenticate (n, p) { ... }

concept Karma [U] {
Map [U, Int] karma;
incKarma (u,1) { ... }
nasKarma (u, 1) { ... }

concerns

separated

coupling is
now cleanly gone: refs are
polymorphic

a different way

concept Post [U] {
Map [Post, U] author;
Map [Post, URL] url;
Post new (a, u) { ... }

}

concept Upvote [U, I] {
Map [U, I] ups, downs;
upvote (u,1) { ...}
downvote (u,1) { ... }

}

concept Comment [U, T] {
Map [Comment, U] author;
Map [Comment, T] target;
Map [Comment, String] body;
Commentnew (a, t,b) {... }

}

web apps have this!
called a route

need a mediator
outside the concept

sync downvote (u, 1) {
Karma.hasKarma (u, 10)
Upvote.downvote (u, 1)

}

web apps have this!
called a database

need two-way map
target to comment

a new way to structure a web app

backend

User
actions

User
database

Post
actions

Post

database

routes
(action syncs)

Karma
actions

Karma
database

Upvote
actions

Upvote
database

no
dependencies
between
concepts!

key lessons: coherence & independence

r upvote getUser
Upvote Session —p Upvote ——————————3Pp Session

upvote getUser

Upvote Session Upvote O————————0 Session
coherence independence
concept embodies a unit of reusable function each concept can be understood by itself
concept contains all and only that function concepts don't refer to each other
example: preventing double voting example: preventing double voting
Upvote stops 2x voting by linking voter to vote Upvote doesn't call Session to get user

Session ensures voter is the logged in user synchronization ensures voter param is user

long history of attempts to fix OOP

I Transform-Component
ASPECT-ORIENTED
SOFTWARE DEVELOPMENT . .

Collision-Component

shape CollisionShape

WITH USE CASES

all

IVAR JACOBSON (Collector) T mask CollisionMask
PAN-WEI NG
. - . —[|:|
worklng W‘th Objftts -1 3 Position
(Camera) float Time
Lifetimi mponen
with Pot Wailg and Odd Anle Lehne float Time

Material-Component
shader Shader
color Color0
color Colorl

Aspect-oriented Programming

Kiczales et al (1997) Entity-component system

Scott Bilas et al (2002)

Role-oriented Programming
Reenskaug et al (1983)

your turmn:
a Twitter/X puzzle

Q - Andy Ostroy & | v ‘;
@AndyOstroy
Seems the only #Wall @realDonaldTrump's built is the one

between him and @FLOTUS #Melania #trump MELANIA TRUMP liked your

Tweet

Seems the only #Wall
@realDonaldTrump's built Is the one
between him and @FLOTUS
#Melania #trump pic.twitter.com/
XINd2jiLUF

'’
" -~

QO 8,221 8:15 PM - May 2, 2017 ®

Q) 4,022 people are talking about this D

your turn: what does heart button do? and what did ML think it did?

Nov 2, 2015: Twitter changes Favorite (Star) to Like (Heart)

We are changing our star icon for favorites to a heart
and we'll be calling them likes... We know that at times
the star could be confusing, especially to newcomers.
You might like a lot of things, but not everything can be
your favorite. Twitter press release

what concept is this?

@ 21 8:15PM - May 2, 2017

Q 4,022 people are talking about this

concept Upvote
purpose rank items by popularity
S, _principle after upvotes, ranked by num upvote

N
\\

-

" ,_/

— o > 2
~ — =
| » — = —

—— == — e - =

== e 3

concept Bookmark
purpose save items to revisit

® principle save then select from private list later

@ Andrew Yang would fine gunmakers for deaths caused by their products.

Andrew Yang would fine gunmakers for deaths caused by their products.

The Boston Globe £ @BostonGlobe - 21h v @ The Boston Globe & @BostonGlobe - 21h v

Send via Direct Message

E\T Add Tweet to Bookmarks

-

&’ Copy link to Tweet

Yang would fine gunmakers for deaths caused by their products - Th... Yang would fine gunmakers for deaths c:
You probably know Andrew Yang wants to give every American $1,000 You probably know Andrew Yang wants t .
a month. Something you might not know: He wants to fine gun ... a month. Something you might not know. T, Share Tweet via ...
&’ bostonglobe.com &’ bostonglobe.com __
QO 29 M 9 q QO 29 v 9 QO 94 T

concept Upvote concept Bookmark
purpose rank items by popularity purpose save items to revisit

your turmn:
RealWorld API

Jx\ > :‘E’:R IWorld | Create Submit Signin
(R ealWorld example apps o

The mother of all demo apps

See how the exact same application is built using different libraries and frameworks.

Frontend - Fullstack

LANGUAGES .NET + Minimal API Ca

All Erikvdv/realworldapiminimal

Java . '

TDesalnE ActixWeb + Diesel S

Go snamiki1212/realworld-v1-rust-actix-web-diesel

FAIETL Adonis .

Kotlin . JavaScript
Utwo/adonis-realworld-example-app

JavaScript

C# Adonis

ThyimaCrrrint

how many concepts can you find in this endpoint?

RealWorld Q Search %K O
Implementation creation v Users (fOr authentication) On this page
Introduction Overview
Features JSON Objects returned by API:
. Users (for authentication)
Expectations nuser": {
1] 3 1 ([[3 . 1] PrOfIIe
Specifications v email®: "jake@jake.Jjake®, Single Article
L "token": "jwt.token.here", . _
Frontend specifications v , Multiple Articles
"username": "jake", Sinale O t
: ingle Commen
Templates "bio": "I work at statefarm", _
Sty _ Multiple Comments
yles "image": null
. List of Tags
Routing
API
Tests
Backend specifications v
Introduction PI‘Of"e
Endpoints
API response format {
CORS "profile": {
Error handling "username": "jake",
Postman "bio": "I work at statefarm",
Tocte "image": "https://api.realworld.io/images/smiley-cyrus.jpg",

"following": false
Mobile specifications

Community v ¥
Authors

Resources

exercise:
Z,00m reactions

Zoom'’s reactions

0 e S
P -

| - S ax’~ @ - ~ e O cc 1 ® -~)55 ld -~

Stop Video Security Participants Chat Share Screen Polls Record Live Transcript Breakout Rooms Reactions Apps Whiteboards More

love

Vi beo s -

no slower faster away
v X <« > »

hand

¥ Raise Hand

anomalous behaviors

disappear after 10s counted too
clear feedback: ‘ - B ' .
all but these Q é &’ mutually disjoint

v - mutually disjoint too!

counted U Raise Hand

often left up mistakenly

functions by reaction type

Reaction Disappears Counted Cancel by host
Emojis v (V)

Yes/no v/ v
Slow/speed 4 4

Away (v) (V)

Hand (V) v

v yes (V) yes, but should probably be no

disjointness of reaction types: my take

Reaction Emojis Yes/no Slow/speed Away Hand
Emojis 4

Yes/no v (V) (V) (V)
Slow/speed (V) v (V) (V)
Away (V) (V) v (v)
Hand (V) (V) v) v

v yes (V) yes, but should probably be no

8 &

v

redesigning Zoom

vye oy
: — .. e

A

X <« > »

¥ Raise Hand

what concepts are involved?
can you identify the concepts behind this widget?

separate o

nem more cleanly?

classity into familiar and novel concepts?

can you do better?
how might you change Zoom’s design?
could change Ul and behavior for muting, eg

my take: splitting into coherent & independent concepts

- a @ 0 \ familiar
=\ & cactlon gy concept

familiar Feedback

¥ Raise Hand

Presence Chat Reaction Feedback

i Just right
Request to speak || Watching/listening Other emoj ust rig

Speaking I’'m away Audience Recent emoji Slow down Speed up

I B 1 | [I6 N 241N 9)

V[S|©|m] [Eveyoner | hore.. *©»

takeaways

key idea #1: coherence

user name
password

auth email

objects tend to USErName biography concepts separate
conflate functions display name display name functions

email address email address

preferences

phone number

email address

key idea #2: independence

Post

addComment Comment
delete
upvotePost edit
delete

User

authenticate

Upvote
addVote

Post

Create

el
delete

Comment

create
edit
delete

Upvote

getVotes

in OOP, method calls
couple classes together

User

register

so they can't stand alone in concept design,

syncs are defined externally
so concepts can stand alone

authenticate

changePassword

what’s next?

what next?

designing concepts

getting to the details

defining behavior: states & actions
purposes & principles

