
Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

11
Concept Integrity

When a system comprised of concepts executes, each concept runs as its own
little machine, controlling when an action may occur, and what its effect on the
concept state will be. Synchronizations can constrain actions further, by mak-
ing the actions of one concept happen together with certain actions of anoth-
er concept.

One concept cannot modify the state of another concept directly, or some-
how change the behavior of one of its actions. This is critical, and what makes
concepts intelligible in their own right.

But this modularity only holds if concepts are properly composed, using
the synchronization mechanism of Chapter 6. If the framework in which the
concepts are implemented allows them to interact in other ways, or if there
are bugs in the code, a concept may behave in an unexpected way, violating its
specification.

The designer can also break a concept, tweaking its behavior so that, in com-
position with other concepts, it conforms to the needs of the particular app.
Some adjustments might preserve a concept’s specification while adding some
new functionality, but others might break it.

For all these reasons, it is critical that the integrity of a concept be maintained
when it is composed with other concepts. In this chapter, I’ll show you some
examples of integrity violations and the problems they cause.

Some integrity violations (such as our first one, The Revengeful Restaura-
teur) are blatant and easy to fix once discovered. Some (such as the second,
Font Formats) are subtle and represent an ongoing design struggle that has yet
to be resolved. Some (such as the third, Google Drive) are unsubtle but fixable
only with considerable effort.

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

158

the essence of software

A Blatant Violation: The Revengeful Restaurateur
Imagine a restaurant reservation app with a reservation concept with actions to
reserve and cancel tables, and a review concept that lets users post ratings of restau-
rants they’ve visited.

Each of the two concepts has its defined behavior and its operational prin-
ciple: for reservation, that if you reserve and turn up at the right time, a table will
be available; for review, that aggregate ratings reflect the individual ratings that
were previously submitted.

When these concepts are composed, the designer can synchronize them to-
gether. For example, she might decide that you can’t review a restaurant until
you’ve reserved it (or maybe even dined there). This synchronization will con-
strain the app by ruling out certain behaviors—in particular, ones in which a
user reviews a restaurant they never made a reservation for. Despite the syn-
chronization, every behavior of the app will still make sense when viewed
through the lens of a particular concept.

Now suppose a restaurateur, frustrated by bad ratings, decides to hack the
app to punish ungrateful customers. He modifies the behavior so that a cus-
tomer who enters a bad rating is able to make a subsequent reservation, but
then finds—even though there was never a cancel action—that when they ar-
rive at the restaurant there is no record of the reservation, and thus no table.

This hack does not correspond to any legitimate synchronization. Not only
does it couple together the two concepts, but it breaks the reservation concept.
The operational principle of that concept says that if you make a reservation
and don’t cancel it, a table will be available. With this hack, the principle no lon-
ger applies, and the app cannot be understood in terms of the original concept.
This is what I will call an integrity violation.

Suppose, on the other hand, the revengeful restaurateur hacked the app so
that when any customer posts a low rating, a cancel action is performed on any
reservation the customer has at any restaurant. The poor customer probably
gets a notification (due to synchronization with the notification concept) of the
cancellation, despite never intending to cancel.

This behavior, however mean-spirited and annoying it might be, does not
violate integrity because the new behavior is perfectly understandable in terms
of the specification of the reservation concept. It might annoy the customer to

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

159

11: Concept Integrity

discover that a cancellation has been issued without their consent, but the be-
havior is still consistent with the concept (its specification being silent on the
question of who is allowed to cancel a reservation).

Font Formats: A Long-Standing Design Problem
In the first word processors, text was formatted with three simple properties:
bold, italic, and underline (Figure 11.1). Each property had an associated action
that toggled it, so if you applied the action bold to plain text, it would become
bold; and if you applied it again, it would return to plain. This concept is so fa-
miliar and remains so widely deployed that it seems silly to have to name it. But
for the sake of our discussion, let’s call it format toggle. You can find it today in
thousands of apps from email clients to embedded rich text editors.

Another important (and early) concept for formatting text is typeface. Its be-
havior is simpler: there’s a list of typefaces, and you can choose one and apply
it to some text. In the early days, the format toggle concept was implemented as a
transformation that was applied to the characters provided by the typeface con-
cept: a character was italicized by applying a slant to the letter form, and made
bold by a different transformation that increased the weight.

Real typographic italics, however, have never been just slanted versions of
the roman forms, but are typically more flowing and calligraphic; nor are the

fig. 11.1 The format toggle concept in the first versions of MacWrite (1984).

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

160

the essence of software

bolder versions of type just fatter. Computer typography advanced, and with
the advent of PostScript fonts, it became common to provide distinct bold and
italic versions of the typeface in separate font files, and to use transformations
only for scaling. The implementers of word processors were able to maintain
both concepts, format toggle and typeface, by a clever trick. When you set some
text to italic, it switched to the italic font file; setting it to bold would then
switch to the bold-italic font file; setting it to italic again would then switch to
the bold font file; and so on. In this way, the design preserved the integrity of
both concepts.

Then, with the arrival of professional fonts, trouble hit. Now, instead of just
having a few variants of each typeface, a much larger collection was provided.
The difference between these and the old fonts is usually additional weights
such as semibold (between roman and bold) and black (heavier than bold), as
well as additional variants for use at different sizes, such as a display font (for
text set in very large sizes), or a caption font (for text set in very small sizes).

With these enrichments, all hell breaks loose, and format toggle no longer
works. Figure 11.2 shows what happens in Apple’s TextEdit. You can see I’ve
selected the typeface family Helvetica, which has six variants. The first line was
set in the Light variant. I then copied the text to the second and third lines. To
the second line, I applied the bold action once, and to the third line I applied it
twice. If format toggle works correctly, applying the bold action twice should take
you back to where you started, so the first and third lines should look identical.
But they don’t, because applying bold once changed the type from Helvetica
Light to Helvetica Bold, and applying it again changed it to Helvetica Regular
(and not back to Helvetica Light).

fig. 11.2 Integrity violation example in TextEdit: bolding once (second line) turns the
text from light to bold; bolding again (third line) leaves the text in regular, not light.

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

161

11: Concept Integrity

In short, the implementation of format toggle in TextEdit does not meet its
specification, but not because there is a bug in the code. The problem is a deep-
er one, and involves the interaction between the two concepts. The extension
to the typeface concept has broken the format toggle concept.

Apple tried to fix this problem in its productivity apps such as Pages. The
dialogs looks just like TextEdit, but the bold and italic actions behave differ-
ently. If you bold some text in Helvetica Light, it will now be in Helvetica Bold
(naturally); if you bold it again, however, it will be back in Helvetica Light (in
accordance with the specification of format toggle). But this behavior is achieved
with some hidden magic, which introduces new problems.111

This critique might seem nitpicky, but it’s actually a serious problem in desk-
top publishing. Figure 11.3 shows the character style dialog in Adobe InDesign.
Here, I’m defining a style called Emphasis to be used for text that is to be empha-
sized. By making it a style, I am hoping to be able to factor out whether some
text is emphasized from how it is emphasized (by italics, bold or even underlin-
ing, say). For an initial definition of the character style, I’ve selected the “font
style” Italic. Note there is no selection for the “font family”; this is essential,
because it allows the character style to be applied to text in different typeface
families.

At least that was my hope; in fact, it doesn’t work. To apply this Italic setting,
InDesign switches the typeface to the one whose name is the typeface family
concatenated with the string “Italic.” So if the text is in “Times Regular” it will

fig. 11.3 The character style dialog in Adobe InDesign: formats are specified by select-
ing styles such as Italic and Bold, which undermines the value of partial styles.

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

162

the essence of software

set it to “Times Italic.” So far so good. But if the text is in “Helvetica Regular” it
will try to set it to “Helvetica Italic.” As you can see from the TextEdit screen-
shot (Figure 11.2), my version of Helvetica calls the italicized form “Helvetica
Oblique.” So the character style is not in fact typeface-independent, and can
only be applied successfully to text in certain typefaces.

There have been other attempts to fix this problem, but there seems to be no
satisfactory solution. The format toggle concept just cannot be reconciled with
more sophisticated typographic concepts.

Losing Your Life’s Work with Google Drive
My wife keeps most of her work documents in Google Drive. Having seen ac-
cidents in Dropbox (Chapter 2), I was worried about her losing her work, and
began looking for ways to protect it.

I learned that Google Drive itself does not provide backup,112 so I would
have to devise my own scheme. An obvious idea came to mind. I would install
the Google Drive app and keep all of her cloud files synchronized to a folder in
her local disk, and would then add that folder to the selection set of the back-
up utility that I already had running on her laptop. That way, whenever one of
her Google Drive files was modified, the local version would be updated, and
would then be backed up to the cloud.

I was surprised to discover that this apparently straightforward scheme does
not work. Searching online to see if anyone had come up with a solution to this
dilemma, I came across a sad story of someone who had relied on a variant of
this scheme and paid a heavy price.

The story is illustrated in Figure 11.4. On the left is the starting state, in which
there are two files, book.gdoc (a Google document) and book.pdf (a PDF export
of the document), both stored in the Google cloud and synchronized to the
Google folder on the local disk. Our protagonist then moves the files out of the
folder on the local disk, resulting in the state shown in the middle. The Google
Drive synchronizer then runs, and seeking to make the contents of the local
folder and the cloud folder identical, it removes both files from the cloud.

At this point, you might imagine that, whatever happens to Google Drive,
the files are safely stored on the local disk. Sadly, this was not the case. As our
hapless user reports:

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

163

11: Concept Integrity

The next morning, I go to open a .gdoc file and get this error: “Sorry the file
you have requested does not exist.” My heart sank. What happened to the
work from yesterday? I opened another file. Then another. All of them the
same message. I was starting to freak out.

Indeed, most of his files were gone, for good.113 His summary: “I lost years of
work and personal memories that I saved as Google Docs files because of a
poor user interface.” As we shall see, though, the problem was deeper than the
user interface: it was a concept integrity violation.

Our user was relying on the behavior of synchronization. The purpose of this
concept is to maintain consistency between two collections of items; the op-
erational principle is that any change made to one collection is propagated to
the other. Synchronization, unlike backup, also propagates deletions; this al-
lows you to keep items organized. A fundamental property of synchronization
is that the copies of the items in the two places should be identical.

Unfortunately, the Google Drive synchronizer does not always create faith-
ful copies. It does for conventional files, such as book.pdf. But for Google app
files, such as book.gdoc, it doesn’t copy the file’s data to disk at all. Instead, it cre-
ates a file that contains just a link to the file in the cloud. That’s why attempt-
ing to open the file on the local disk produced an error message: clicking on it
opened a web page in the browser for a file in the cloud that no longer existed.

book.pdfbook.gdoc

book.pdfbook.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

book.pdfbook.gdoc

book.pdfbook.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

book.pdfbook.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

fig. 11.4 Integrity violation in Google Drive: the cloud-app concept breaks the synchronization
concept. A user moved files out of his Google drive in order to make space in the cloud, but the

files he moved turned out just to be links to files in the cloud that no longer existed.

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

164

the essence of software

In addition to synchronization then, there’s another concept at play, which we
might call cloud app. This concept embodies the idea of documents in the cloud
that are accessed through a link. In concept terms, combining the two concepts
has violated the integrity of the synchronization concept.

From a concept design point of view, there is no obvious barrier to fixing this
problem (in contrast to the case of the format toggle concept). I suspect it’s just
not a priority for Google to implement a solution, although it’s surprising that
more users of Google Apps aren’t more concerned about not having backups.

Lessons & Practices
Some lessons from this chapter:
· When concepts are composed to form an application, they may be synchro-

nized (as explained in Chapter 6) so that their behaviors are coordinated.
This synchronization may eliminate certain behaviors of a concept, but can
never add new behaviors inconsistent with the concept specification.

· But if the concepts of an application are assembled incorrectly, behaviors
may result which, viewed in terms of the actions and structure of a particular
concept, break that concept’s specification.

· These integrity violations confuse users, because their mental models of con-
cept behavior are broken.

And some practices you can apply now:
· When designing an app using concepts, even if you are not defining syn-

chronizations precisely, at least convince yourself that every interaction be-
tween concepts can at least in principle be viewed as a synchronization.

· If you’re having trouble using an app, or analyzing a usability problem, and
you discover that a concept is behaving in an unexpected way, ask yourself
whether interference from another concept may be to blame.

· To ensure integrity, make sure that a concept that purports to be generic re-
ally is. In the Google synchronization example, the integrity violation is evident
in the non-uniform way in which different types of files are handled.

Dr
af

t:
no

t f
or

 d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
Da

ni
el

 Ja
ck

so
n

fig. 11.5 A pictographic summary of the principles of Chapters 9 to 11. A line between a purpose
and a concept indicates that the concept fulfills the purpose; the broken line (for the integrity
violation) indicates non-fulfillment, due to the interference of another concept; lines between

concepts denote composition; dotted boxes represent applications.

P1 C1

P2

P1 C1

C2

P1 C1

C2

P1 C1

P2

C2
P1 C1

P2 C2
overloaded conceptconcept without purpose

purpose without concept redundant concept

specificity: concepts and
purposes are one-to-one

P1 C1

P2 C2

integrity violation:
one concept breaks another

P1

C1

A2

P1

P1 C1

P2 C2

C1

A1

P1

C11

A2

P1

C12

integrity: when composed,
each concept still fulfills its purpose

familiarity: when the same purpose
arises in different apps, the same

concept is used to fulfill it

familiarity violation: different
concepts are used for the same

purpose in different apps

A1

