
Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

Contents

How to Read �is Book · 1

Part I: motivations
1 Why I Wrote �is Book · 9
2 Discovering Concepts · 15
3 How Concepts Help · 29

Part iI: esSentials
4 Concept Structure · 47
5 Concept Purposes · 59
6 Concept Composition · 79
7 Concept Dependence · 99
8 Concept Mapping · 109

Part IiI: principles
9 Concept Speci�city · 127
10 Concept Familiarity · 147
11 Concept Integrity · 157

Questions to Remember · 167
Acknowledgments · 179

resources
Explorations & Digressions · 183
References · 299
Index of Applications · 309
Index of Concepts · 311
Index of Names · 315
Index of Topics · 317

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

1
Why I Wrote �is Book

As an undergraduate in physics, I’d been entranced by the idea that the world
could be captured by simple equations like F = ma. When I became a program-
mer, and later a computer science researcher, I gravitated towards the �eld of
formal methods, because it promised to do something similar for so�ware: to
express its very essence in a succinct logic.

A Passion for Design

My main research contribution in the 30 years since my PhD has been Alloy,3 a
language for describing so�ware designs and analyzing them automatically. It’s
been an exciting and satisfying journey for me, but I came to realize over time
that the essence of so�ware doesn’t lie in any logic or analysis. What really fas-
cinated me wasn’t the question that consumed most formal methods research-
ers—namely how to check that a program’s behavior conforms exactly to its
speci�cation—but rather the question of design.4

I mean “design” here in the same sense that the word is used in other design
disciplines: the shaping of some artifact to meet a human need. Design, as the
architect Christopher Alexander put it, is about creating a form to �t a context.
For so�ware, that means determining what the behavior of the so�ware should
be: what controls it will o�er, and what responses it will provide in return.
�ese questions have no right or wrong answers, only be�er or worse ones.5

I wanted to know why some so�ware products seem so natural and elegant,
react predictably once you master the basics, and let you combine their features
in powerful ways. And to pinpoint why other products just seem wrong: clut-
tered with needless complexity, and behaving in unexpected and inconsistent
ways. Surely, I thought, there must be some essential principles, some theory
of so�ware design, that could explain all of this. It would not only explain why
some so�ware products are good and some are bad, but it would help you �x
the problems and avoid them in the �rst place.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

10

the essence of software

Design in Computer Science and Other Fields

I started to look around. Within my own sub�eld (formal methods, so�ware
engineering and programming languages), such a theory exists for what you
might call “internal design”—namely the design of the structure of the code.
Programmers have a rich language of design, and well-established criteria for
what distinguishes good designs from bad ones. But no such language or crite-
ria exist for so�ware design in the user-facing sense, namely design that deter-
mines how so�ware is experienced as a form in context.6

Internal code design is very important and in�uences primarily what so�-
ware engineers call “maintainability,” which means how easy (or hard) the code
is to change over time as needs evolve. It also in�uences performance and reli-
ability. But the key decisions that determine whether a so�ware application or
system is useful and ful�lls its users’ needs lie elsewhere, in the kind of so�ware
design in which the functionality and the pa�erns of interaction with the user
are shaped.

�ese big questions were at one time more central in computer science. In
the �eld of so�ware engineering, they came up in workshops on so�ware de-
sign, speci�cation and requirements; in the �eld of human-computer interac-
tion, they permeated early work on graphical user interfaces and computational
models of user behavior.7

But as time passed, they became less fashionable, and they faded away. Re-
search in so�ware engineering narrowed, and eliminating defects—whether
by testing or more sophisticated means such as program veri�cation—became
synonymous with so�ware quality.8 But you can’t get there from here: if your
so�ware has the wrong design, there’s no amount of defect elimination that will
�x it, short of going back to the very start and �xing the design itself.9

Research in human-computer interaction (HCI) shi�ed to novel interaction
technologies, to tools and frameworks, to niche domains, and to other disci-
plines (such as ethnography and sociology). Both so�ware engineering and
HCI embraced empiricism enthusiastically, largely in the misguided hope that
this would bring respectability. Instead, the demand for concrete measures of
success seems to have led researchers towards less ambitious projects that ad-
mit easier evaluation, and has stymied progress on bigger and more important
questions.10

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

11

1: why i wrote this book

Puzzlingly, even as interest in design seems to have waned, talk of “design” is
everywhere. �is is not in fact a contradiction. �e talk, almost exclusively, is
about the process of design, whether in the context of “design thinking” (a com-
pelling packaging of iterative design processes), or of “agile” so�ware develop-
ment. �ese processes are undoubtedly valuable (so long as they are applied
judiciously and not as panaceas), but they are for the most part content-free. I
mean that not to disparage but to describe. Design thinking, for example, might
tell you to develop your solution hand in hand with your understanding of the
problem, or to engage in alternating phases of brainstorming (“divergence”)
and reduction (“convergence”). But no design thinking book that I have read
talks in depth about any particular designs and how the process sheds light on
them. �e very domain-independence of design thinking may be the key to
its widespread appeal and applicability—but also the reason it has li�le to say
about deeper challenges of design in a particular domain such as so�ware.11

Clarity & Simplicity in Design

When I began the Alloy project, with the goal of creating a design language
that was amenable to automatic analysis, I was critical of existing modeling and
speci�cation languages whose lack of tool support rendered them “write-only.”
�is snide dismissal was not entirely unwarranted. A�er all, why would you go
to the trouble of constructing an elaborate design model if you couldn’t then
do anything with it? I argued, in particular, that the designer’s e�ort should
be rewarded immediately with “push-bu�on automation” that would instantly
give you feedback in the form of surprising scenarios that would challenge you
to think more deeply about your design.12

I don’t think I was wrong, and Alloy’s automation did indeed change the
experience of design modeling. But I had underestimated the value of writing
down a design. In fact, it was a not very well guarded secret amongst formal
methods researchers (who were eager to demonstrate the e�cacy of their tools
by �nding �aws in existing designs) that a high proportion of the �aws were
detected before the tools were even run! Just transcribing the design into logic
was enough to reveal serious problems. �e so�ware engineering researcher
Michael Jackson credits not the logic per se but the very di�culty of using it,
and once mischievously suggested that the quality of so�ware systems might
be improved if designers were simply required to record their designs in Latin.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

12

the essence of software

Clarity is good not only for �nding design �aws a�er the fact. It is also the
key to good design in the �rst place. In teaching programming and so�ware
engineering over the last thirty years, I’ve become increasingly convinced that
the determinant of success when you’re developing so�ware isn’t whether you
use the latest programming languages and tools, or the management process
you follow (agile or otherwise), or even how you structure the code. It’s simply
whether you know what you are trying to do. If your goals are clear, and your
design is clear—and it’s clear how your design meets the goals—your code will
tend to be clear too. And if something isn’t working, it will be clear how to �x
it.13

It is this clarity that distinguishes great so�ware from the rest. When the
Apple Macintosh came out in 1984, people could see immediately how to use
folders to organize their �les; the complexities of previous operating systems
(such as Unix, which made even the command to move �les between folders
complicated) seemed to have evaporated.

But what exactly is this clarity, and how is it achieved? As early as the 1960s,
the central role of “conceptual models” has been recognized. �e challenge was
not merely to convey the so�ware’s conceptual model to the user so that her
internal version (“mental model”) was aligned with the programmers’, but to
treat it as a subject of design in its own right. With the right conceptual model,
the so�ware would be easy to understand and thus easy to use. �is was a great
idea, but nobody seems to have pursued it, and so until now “concepts” have
remained a vague, if inspiring, notion.14

How �is Project Came About

Convinced that conceptual models were indeed the essence of so�ware, I start-
ed about eight years ago trying to �gure out what they might be. I wanted to
give them concrete expression, so that I could point to some so�ware’s concep-
tual model, compare it to others (and to the mental models of users), and have
an explicit focus for design discussions.

�at didn’t seem so hard. A�er all, a plausible �rst cut at a conceptual mod-
el might be just a description of the so�ware’s behavior, made suitably abstract
to remove incidental and “non-conceptual” aspects (such as the details of the
physical user interface). What proved much harder was �nding appropriate

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

13

1: why i wrote this book

structure in the model. I had an inkling that a conceptual model should be
made up of concepts, but I didn’t know what a concept was.

In a social media app such as Facebook, for example, it seemed to me that
there should be a concept associated with liking things. �is concept surely
wasn’t a function or action (such as the behavior bound to the bu�on you click
to like a post); there are too many of those, and they only tell part of the story.
It also surely wasn’t an object or entity (such as the “like” itself that your action
produced), since at the very least the concept seemed to be about the relation-
ship between things and their likes. It also seemed essential to me that the con-
cept of liking was not associated with any particular kind of thing: you could
like posts, comments, pages, and so on. �e concept, in programming lingo, is
“generic” or “polymorphic.”

�is Book: Opening a Conversation

�is book is the result of my explorations to date. Driven by dozens of design
issues in widely used applications, I’ve evolved a new approach to so�ware de-
sign, re�ning and testing it along the way. A happy aspect of this project has
been that every app failure or frustration had a silver lining: a chance to extend
my repertoire of examples. It has also given me greater sympathy and respect
for the designers when my analysis revealed the full complexity of the problem
they faced.

Of course, the problem of so�ware design is not solved. But as my friend
Kirsten Olson wisely advised me: a book should aim to start a conversation,
not to end one. In the course of giving many talks about this project, I’ve been
thrilled to discover that it seems to resonate with audiences more than any of
my previous ones. I suspect this is because so�ware design is something we all
want to talk about, but we have not known how to have that conversation.

So to you, my readers—fellow researchers, designers and users—I present
this book as my opening gambit in what I hope to be a fruitful and enjoyable
conversation.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

Index of Applications

Adobe Illustrator 53
Adobe InDesign 31, 51, 53, 121–122, 161–

162, 244, 265–266, 296
Adobe Lightroom 95, 120–121, 138, 151–

153, 247, 271–272, 281–282, 282, 290, 293
Adobe Photoshop 33, 34, 68, 90, 211, 250,

267–269, 274, 286–288, 290
Amazon Prime 113
Apple Calendar 92–94
Apple Color Picker 54, 236
Apple Contacts 153–154, 294
Apple Finder 243, 282
Apple HyperCard 290
Apple iCloud 40
Apple iPhone 215
Apple iPod 212, 214
Apple iTunes 214–215
Apple Keynote 73, 106, 129, 149–151, 209,

210, 274, 278
Apple Lisa 33, 47
Apple Macintosh 12, 24, 33, 47, 90, 188,

204, 206
Apple Mail 50, 60, 118–119, 123, 128, 131,

279
Apple Numbers 74–76
Apple Pages 51, 53, 121–122, 161–162, 295–

296
Apple Photos 40
Apple Podcasts 88
Apple Preview 210
Apple Safari 105, 278
Apple TextEdit 160–162, 224, 296
Apple Trash 47–51, 91–92, 212, 220, 243,

264, 270
Atom 31

Backblaze 16–17, 111–112, 116–118, 123, 280
BBEdit 31, 291
Bravo 237

Calendly 34
Carbonite 117
change.org 112
Chip and PIN 70, 258
Crashplan 117
CSS 256–257

Dropbox 17–23, 40, 50, 203–205, 205–206
Drupal 214, 289

Emacs 31
Epson (printer) 94, 137, 286

Facebook 13, 29, 69, 104, 133–139, 141–143,
147, 148, 238, 251, 277, 288

Fuji�lm (camera) 138–139, 208

Git 134, 204, 254
Gitless 254
Gmail 37, 50, 89, 93, 114–116, 123, 128, 130,

132, 136, 136–139, 143, 213, 243, 266, 271,
279–280, 283

Google Apps 25, 93, 164, 271
Google Calendar 92–94
Google Docs 60, 61, 237
Google Drive 50, 162–164, 296, 297
Google Forms 95, 272
Google Groups 94–96, 148
Google Hangouts 73, 198
Google Sheets 95
Google Slides 274

Hacker News 288

Instagram 147

LaTeX 32
LinkedIn 41
Linux 50

Mastermatic 266

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

310

the essence of software

Mercurial 134
Microso� Outlook 270–271
Microso� PowerPoint 53, 129, 149–151, 209,

274, 291–292, 292
Microso� Publisher 31
Microso� Teams 73
Microso� Windows 24, 90, 208, 237, 270
Microso� Word 31, 51, 53, 121–122, 211, 237,

243, 247, 265
Moira 89, 266
Multics 205

Net�ix 142, 273
NokNok 294

Open O�ce 31
OpenTable 251, 265
Oracle Java 109–111
OS X (macOS) 208

 El Capitan 50
 Lion 51, 64
 Mountain Lion 255

PayPal 114
Piazza 101
PostScript 160

QuarkXPress 31, 53
Quora 70, 101

Reddit 288

Scribus 31
Signal 142
Skype 198
Slack 142, 148
SnapChat 147
Squarespace 129
StackExchange 101
Sublime 31
Subversion 134

Teabox 267
�erac-25 96, 273
TikTok 274
Todoist 81
Tumblr 93
Twi�er 29, 65, 93, 134, 147, 148, 255–256,

290

Unix 12, 203–205

VisiCalc 34, 289

WhatsApp 147, 148, 274
WordPerfect 31
WordPress 289

Zoom 73, 96, 131, 197, 272–273, 283
Zotero 120

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

Index of Concepts

access control 86, 261
account 239
action 153, 290
adjustment 240
administrative group 89
adverse interaction 216
animation 106, 278, 279
article 174
aspect ratio 138, 139
asset 239, 240
audio mute 96
auditing 41
authentication 41, 239, 241
authorization 41
auto caption 274
available funds 66

backup 16, 17, 111, 128
bank 239
ba�ery 73, 260
BCC 136
bookmark 61, 66, 105, 134, 278
boxing 254
branch 254
breakout 283
broadcast 131, 283

cache 105
calendar event 92, 272
call 15, 274
call forwarding 62, 87
capability 41
category 130, 170
cellular 88
certi�cate 35, 105
channel 90, 148, 211, 240, 267–270
chapter 31
character 31
character style 278
chat 131, 283

chatroom 148
chip 70
class (CSS) 53
cleared check 67
cloud app 164
collateral 239
collection 120
color theme 53
comment 29, 93, 104, 148, 174, 246, 246–

247, 276–277, 277
commit 135
contact 87, 153, 154
conversation 30, 114, 279
cookie 105, 278
correspondent 128, 169
coupon 267
cropping 170, 286, 288
cursor 291

delegate forwarding 63
direct �ight 71
directory 203
domain name 87, 210
donation 113
do not disturb 112
dose 42, 216

editor bu�er 64, 254
email 30, 85, 86, 176, 261, 263, 295
email address 93
equity 239
event type 34
existence coupling 84

favorite 65–66, 105, 134, 148, 255, 278
FDIC insurance 239
�lter 132, 281–282
�ag 118, 281, 283, 284
folder 15, 30, 90–92, 120, 172, 176, 177, 203,

204, 243, 270, 271, 279
follower 134, 148

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

312

the essence of software

follow-me forwarding 63
format 32, 121, 211, 225, 244
format toggle 159–162, 164, 296
formula 34
free sample 89
frequent �yer 36, 114, 212
frequently visited 105, 278
friend 30, 86, 104, 133, 134, 148, 277

group 38, 44, 148, 237–238
group directory 94

hashtag 290
holding 240
HTML 34
H�P 87
hypertext 290

identi�cation 101–104, 274, 277
image quality 138
image size 67–69, 138, 139, 256–257
index 254
install 110
interbank transfer 239
invitation 38, 92

karma 288
keyword 282

label 30, 37, 81–85, 85–88, 88–90, 99, 114–
116, 130, 168, 176, 213, 262, 263, 266, 279–
280, 281

layer 33, 34, 106, 167, 211, 240, 250, 268, 274,
290

like 13, 29, 66, 105, 141–143, 170, 278, 288
line 31
link 34
loan 239
log 270

mailbox 30
mailing list 89
markup 290
mask 33, 34, 90, 211, 268, 290
master 266

master page 265
master slide 106, 274
message 148
metadata 21, 241
moderation 38, 39, 148

nickname 153, 154, 294
no-show 56
noti�cation 38, 69, 87, 97, 148, 158, 171, 243,

245

object list view 209
outline tree 151, 279

page 32
page cache 35
paper feed 137, 286
paper option 94
paper size 137, 286
paper source 94
paragraph 31, 32, 106, 211, 225, 244
paragraph style 278
password 177, 241
permission 94
petition 112–114, 113
phone call 87
photo 277
PIN 70
pixel 240
pixel array 67, 68, 267, 269
podcast 88
poke 63, 251
post 29, 38, 86, 87, 93, 104, 105, 148, 167, 174,

232, 238, 243, 246, 247, 276, 277
precis 135
prescription 216
preset 138, 151–153, 293–294
preset station 253
private browsing 35, 105, 278
pro�le 238, 273
pro�ling 142, 143
publication 240
push poll 71

Q&A 101–102, 102–104, 275

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

313

index of concepts

raised hand 96
range 74, 74–76, 172
rating 148, 233
reaction 141–143, 278
reading list 106, 278
recent activity 148
recommendation 142, 143, 288
recording 101, 103, 104, 277
reference 34
reply 104, 277, 278
request 38
resampling 288
reservation 15, 55–57, 58, 72, 158, 176, 201,

220, 223, 227, 229, 230, 231, 233, 234, 236,
237, 238, 239, 243, 245, 251, 263, 264, 265

review 158, 265, 285
rule 132

save as 255
seat 36
seat allocation 229
section 31, 60, 61, 150, 171, 212, 291
selection 90, 268, 282, 291
selection pane 209
shape 106
shape style 278
shared song 274
sharing 21
shopping cart 89
slide 106
slide group 149–151
slideshow 73
social security number 237
song 36, 212
special block 106, 278, 279
staging area 254
star 283, 284
stash 254
status update 238
stock 239
style 32, 51–54, 106, 121, 129, 211, 220, 223,

224, 225, 229, 235, 236, 237, 238, 240, 241,
243, 244, 245, 253, 263, 265, 266, 274

stylesheet 106
style (TextEdit) 54
subject line 135, 136
subscription 148
swatch (Illustrator) 53, 54
synchronization 40, 163, 164, 214–215, 297

table 176
tag 69, 102, 104, 277
target 73
template 129, 140
text block 106
text �ow 32
text style 106
theme 106, 129
this object 255
threaded comment 278
timeline 238
title 93
todo 81, 82, 83, 84, 85, 86, 88, 99, 234, 262
transition 278
trash 33, 34, 47–51, 61, 74, 89, 90–92, 172,

176, 177, 205, 219–220, 220–221, 223, 225,
228, 229, 230, 237, 238, 240, 243, 245, 262,
295, 297

tweet 93
two-factor authentication 41, 215
typeface 159, 160, 161

Unix folder 22, 270
unread 87
upvote 15, 39, 66, 87, 101, 102, 103, 104, 109,

141–143, 148, 241, 277, 278, 288, 289
URL 34, 105, 167, 232, 290
user 70, 101, 102, 103, 104, 105, 273, 275
username 93

VIP 60

web service 210, 211
Wi-Fi 88

Zoom session 272

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

Adams, President John 196
Aldrich, Jonathan 193
Alexander, Christopher 9, 194, 195, 258, 291

Bachman, Charles 240
Batory, Don 247
Berners-Lee, Tim 290
Bjorner, Dines 203
Bossavit, Laurent 193
Bricklin, Dan 34, 289
Brignull, Harry 279
Bringhurst, Robert 195
Brooks, Fred 100, 199–200
Bruns, Glen 248
Buxton, Bill 192, 207

Card, Stuart 188, 198, 199
Charles, Prince of Wales 153, 294
Chen, Peter 200
Codd, Edgar 289
Constantine, Larry 258
Cunha, Alcino 230

Dijkstra, Edsger 197, 213, 264
Dorsey, Jack 41

Eames, Charles 183
Eames, Ray 183
Egan, Kieran 286
Elizabeth II, Queen 153, 294
Evans, Eric 202

Faste, Rolf 249
Floyd, Bob 189
Foley, James 206
Fowler, Martin 201
Fu, Kevin 215

Greenberg, Saul 192
Green, �omas 188, 207
Gunter, Carl 249
Gunter, Elsa 249

Hoare, Tony 189, 197, 263
Hollan, Jim 252
Hutchins, Ed 252

Ingram, Ma�hew 255
Isaacson, Walter 212
Ive, Jony 183

Jackson, Michael 11, 195, 202, 213, 222, 249,
250, 259

Jackson, Tim 219
Jacobson, Ivar 224
Jen, Natasha 195
Jobs, Steve 36, 183, 212

Kaashoek, Frans 203
Kapor, Mitchell 184, 185, 186
Kleer, Johan de 294
Ko, Amy 211
Koppel, Jimmy 275

Lampson, Butler 203, 237
Latour, Bruno 264
Leveson, Nancy 273
Levy, Ma�ys 195
Liddle, David 186
Linnaeus, Carl 236

Madrigal, Alexis 237
McIlroy, Doug 196
McKim, Robert 249
Menzies, Tim 187
Mitnick, Kevin 215
Molich, Rolf 188
Moran, Tom 188, 198, 199, 206
Mo�, Tim 237
Mylopoulos, John 200

Newell, Allen 188
Newton, Casey 255
Newton, Isaac 222
Nielsen, Jakob 188

Index of Names

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

316

the essence of software

Norman, Don 26, 43, 188, 198, 216, 219, 251,
252, 293

Olson, Kirsten 13
Ostroy, Andy 65
Ovide, Shira 197

Parnas, David 192, 247, 274, 276
Perez De Rosso, Santiago 214, 254
Perrow, Charles 195
Petroski, Henry 195
Polanyi, Michael 195, 222
Pomiane, Edouard de 1, 5, 183

Rose, David 208
Rumsfeld, Donald 259

Saca, Chris 255
Saltzer, Jerry 203
Seely Brown, John 294
Seward, Don 258
Shneiderman, Ben 216
Simon, Herb 258
Simonyi, Charles 237
Spang, Rebecca 237

Suh, Nam 195

Tesler, Larry 237
�imbleby, Harold 189, 197, 216, 223
Tognazzini, Bruce 188
Tschichold, Jan 195
Turner, Clark 273

Uhlrich, Karl 284

van Dam, Andries 206
van Lamsweerde, Axel 250
Victor, Bret 208
Vincenti, Walter 289
von Hippel, Eric 290

Wheeler, David 241
Whitney, Eli 196
Winograd, Terry 184

Yu, Eric 258

Zave, Pamela 249, 251
Zhang, Kelly 205

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

abstraction 25–26
access control 86
accessibility 24
action 49

ambiguous 120
formalized 227
inferred 87
not in logic 231
overcomplicated 175

a�ordance 188, 293
Afghanistan 72
agile development 11, 209, 224
airlines 36, 113, 212, 236
Alloy (language) 9, 184

automation and, 11
concepts and, 225
exploration and, 197
operational principle in, 230

analytics 86
anthropomorphism 264
assurance case 259
auditing 86
authentication 35

backup
cloud storage and, 40
confusing 16–17, 111–112
deletion and, 128
Google Drive 297
restore 116–118, 280
version control and, 134–139

ba�ery failure 72–73
bene�cent di�culty 250
B (formal method) 196
bird song app 100–101
bloat, in applications 209
bounded context 202
Bringing Design to So�ware (book) 185
browser 35, 105
bugs, and veri�cation 189

call forwarding 62–63, 87, 251, 295
cognitive dimensions of notations 188, 207
commit graph 134–139
compatibility 241
composition 79–97

collaborative 85–88
conventional 79–80
free 81–85
preserves concept behavior 261
semantics 260–264
state-based 269–270
synchronization 80
synergistic 88–90, 114
views and, 269–270

concept
abstract type vs. 246–247
actions 49, 175, 227
age 167
API design and, 178
basis of design critique 42
behavior 57, 240–241
catalog 173, 175
competitors’ 169
complicated 145
composite 176
composition 79–97, 99
conformity 153–154
consistent subset 103
core 35–36, 167
costs & bene�ts 37–38
data model 58
de�nes app 29–31
de�nes app family 31–33
de�nes business 35–36
dependence 99–107, 102–104, 172, 174,

246, 275–277
dependence diagram 102–104
deterministic 228
dishonest 36
evolving 237–248

Index of Topics

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

318

the essence of software

concept, continued
explanation order 104, 173
familiarity 147–155, 171
feature vs. 247–248
�aw in code 178
freestanding 99–107, 157, 245–246, 275,

294
generic 13, 101–102, 123, 164, 174, 176,

234, 243–245
handbook 39, 173, 175
happy and sad 170
identifying usability snags 40
implementation 174–175
integrity 157–164, 172, 261
inventive 236–238
inventory 36, 100–101
key characteristics 236–248
localizes data model 242–243
localizes design 47
mapping 109–123, 172, 199, 281–282
medical 216
mental concept vs. 248
mis�t 154
missing 169
modularity 177–178
most valuable 168
name 48, 221
near miss 236
one-to-one with purpose 127–145
operational principle 49, 51, 56, 61, 74,

110, 113, 123, 158, 170, 221–222
overloaded 132–139, 144, 145, 170
product di�erentiator 33–34, 274
purpose 48, 59–77, 168, 173
purposeless 127, 144, 254
purposive 238–240
redundant 130–132, 144, 145, 170, 283
responds to problem 273–274
reuse 39, 147–151
security and safety 41–42, 215
seed 101
semantics 225–226, 225–231
separating concerns 38

concept, continued
shared across family 168
speci�city 127–145, 153
spli�ing 171
state 48, 52
stateful 241–242
structure 47–58
synchronization 157, 175
synergy 172
tricky 34–35
troubled 168
vocabulary 169

conceptual integrity 199–200
conceptual modeling

�eld 200–201
origins 198–200

concreteness fading 243
consistency 25
correctness 189
critical systems 215
crowdsourcing 101, 103
CSP (Communicating Sequential

Processes) 263–264

dark pa�ern 112–114
data model 58
defect elimination

focus of research 10
parable 191–192
so�ware quality and, 190–192

Demeter, Law of 276
dependability case 259
dependence

between concepts 99–107
concept vs. code 275–277
diagram 102–104, 174
emerges from details 277
module vs. concept 245
Parnas de�nition 274–275
primary vs. secondary 277, 278
signi�cant idea 187

design
axiomatic 195, 285
clarity and, 11–12

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

319

index of topics

design, continued
critique 42
democratization of 194
domain-driven 202–203
expert vs. novice 147
HCI research 188–189
importance of details 183, 195
inevitability 292–293
internal, of so�ware 10, 186
levels 23–26, 206–207
meaning of term 9, 185–186
normal vs. radical 289–290
novelty 195
origins of so�ware 184–186
other domains 195
pa�ern 194, 195, 291
principles 216–219
reuse and, 194
safety 41–42, 216
security 41–42, 215
so�ware engineering research 187
teams 38
top-down 213
typography 195
user-centered 188

design journal 173
Design of Everyday �ings (book) 198,

216, 219, 251, 252
design thinking

aided by concepts 193–194
domain-independent 11, 193–194
qualms about 194–195

desktop publishing apps 32–33
determinism 228
digital transformation 35–36
discoverability 209
domain modeling 202–203
d.school 185, 249

Electrum (language) 184, 227
email 30, 132
empiricism

research and, 10, 192–193
so�ware design and, 3

engineering, vs. science 222
entity-relationship diagram 58

failures, of so�ware 195
familiarity, of concepts 147–155, 171
family, of applications 103, 168, 247–248
faucet 63–64, 252
feature

concept vs. 247–248
diagram 277
interaction 248, 294–295

Fi�s’s law 24, 208
fonts, professional 160
formal methods

automation and, 11
bene�ts of modeling alone 11
in general 9
model-based 196
speci�cation languages 196–197
veri�cation 189–190
write-only 11

formal methods, speci�c
Alloy 9, 11, 184, 197, 225, 230, 235
B 196
Electrum 184, 227
Larch 196, 197
OBJ 196
TLA 231
VDM 196, 225
Z 184, 196, 225, 235

generated inputs 262–263
GenVoca (framework) 247
goal, vs. purpose 219–220
gulfs of execution and evaluation 252–254

heuristic evaluation 43, 188
human-computer interaction

design and, 10–11, 188–189
design principles 216–219
empiricism and, 10, 217
formal methods and, 197
mapping and, 109
psychology and, 208

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

320

the essence of software

IDEO (company) 249
i* framework 258
incremental development 99–100
indirection 241
inevitability, in design 292–293
inscription 264
invariants, in programming 187

JSD (Jackson System Development) 202

Larch speci�cation language 196, 197
learnability 211
levels of design 23–26

conceptual 25
linguistic 24
physical 23

listserv 136
liveness property 261
logging 86
logic

dynamic 229
�rst order 235
linear temporal 230
temporal 250

mapping
live �ltering 281–282
Norman’s usage 43, 188
overview 109–123
principles 177
questions 172

mental model 12, 26–27, 198, 248, 294
metaphor

inscription vs. 264
misleading 173, 220
unhelpful 76, 250

micromaniac 1, 5
minimum viable product 99, 174
mis�t 71–76

from context 267
origins 258
safety and, 273
veri�cation and, 259

mobile phone 88

model
conceptual 12, 210–211
data 221, 242–243
domain 242
entity-relationship 200, 201
localized data 202
mental 164, 169, 206, 294
role 240
semantic data 200

Mythical Man Month (book) 199

nail clipper 284
names, role in design 221
nanny scam 66–67
near-miss concept 236
need�nding 248–249
no-function-in-structure principle 294
none, as value 121–122
Notes on the Synthesis of Form (book)

258–259

object
classi�cation 231–234
entity vs. value 202
identity 232
mutability 232
roles 231–234

object-oriented programming 246–247,
275–277

OBJ (speci�cation language) 196
OOram (Object-oriented Role Analysis

and Modeling) 240
operational principle 49

anthropomorphism and, 264
elaborate 51
explanation and, 56
formalizing 229–231
ful�lls purpose 61
liveness and, 262
mapping and, 123
origins 195, 222
partial theorem and, 223
subtle 74
support materials and, 170

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

321

index of topics

theorem and, 221
unclear 113
use case vs. 224–225
violated 158
work�ows and, 110

overloading 132–139
consequences 144
denied purpose 132–133, 134–135
emergent purpose 132–133, 135–136
false convergence 132–133, 133–139, 286
mechanical design 284–285
piggybacking 132–133, 137–307
social concepts 285–286
suggests spli�ing 145
summarized 144
synergy and, 271
upvote concept 289

partial theorem 223
pa�ern

analysis 201
dark 212, 279
design 194, 195, 291
Gang of Four 291

perceptual fusion 24
permutation invariance 234
phishing 35
pleasantness problem 189
PLGR (precision lightweight GPS

receiver) 72–73, 259–260
Post-its 195
precondition 226–227

integrity and, 262
operator 229

problem frames 202
product line 103
programming language

Algol-68 197
Fortran 186
Java 240, 254, 276
JavaScript 255
PL/1 197

Psychology of Human-Computer Interac-
tion (book) 188, 208

purpose 48, 59–77
clarity of 60–61
coherence of 145
concept without 63–65
con�ict of 140
confusing 66–67
criteria for 61–62
deceitful 70–71
essential 145
goal vs. 219–220
granularity & coherence 140
importance 238–240
kinds of 176
misleading 69–70
reformulation of 140
resolves design puzzles 62–63
stakeholder for 140
unful�lled due to mis�ts 71–72
without concept 127–129, 144, 145

radiotherapy 96
redundant concepts 130–132
refactoring 225
refrigerator controls 251
relational join 235–236
representation exposure 187
representation independence 187
requirements

Alexander’s method 258
belong to domain 202
complete 258
negative 72, 258
overview 249–250
use cases and, 224

reservation
con�icts 236
networking 57
railway 57
restaurant 56, 223, 239, 264

resolution, of image 67–69
revengeful restaurateur 158–159

safety-critical systems 215
safety property 261

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

322

the essence of software

search 128
security 41–42, 215
semantics

composition 260–264
concept 225–231
usability and, 207

separation of concerns 88, 213–214
simplicity 40, 197–198
slideshow 73–74
SMV (model checker) 184
so�ware engineering

best quotes 197
body of knowledge 186
components 196
defect elimination and, 190
design vs. 10–11, 185
empiricism and, 10
empiricism in, 192
folklore beliefs in, 193
requirements 249–250
research narrowed 10, 187

speci�cation
abstraction and, 25
correctness and, 189
dependences and, 187
design and, 190, 196–197
essential knowledge 186
feature interaction and, 294
integrity and, 261
languages 11
liveness and, 261
mis�t and, 259
operational principle vs. 50
pleasantness and, 189
preserving, of concept 157
requirement vs. 249
safety and, 261
top-down and, 213
veri�cation and, 189
views 269

spreadsheet 34
staging 87

state 48, 52
function 228
memory and, 221
mutable objects and, 233

state machine 225–226
style

inheritance 54, 223
linked to page master 266
next 244
override 54
partial 54, 121–122, 296
user-de�ned 237

synchronization 80–97
actions enough? 177
complex 175
concept of 40
mitigation 87
over 92–94, 171, 271
removes executions 84–85
semantics 260–264
staging 87
suppression 86
under 94–96, 171

synergy 88–90
Apple Trash 90, 177, 270
Gmail 89, 114, 266
Google Forms 95
imperfect 90, 91–92, 267
Net�ix 273
Outlook 270
Photoshop 90, 267–269
proliferation suggests 106
questions 172
Safari 278
state-based 269–270
trade-o� example 266

system image 26

Terminal World 208
testing 10, 72
text messaging 30
TLA (Temporal Logic of Actions) 231

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Dr
af

t:
 n

ot
 fo

r d
ist

ri
bu

ti
on

 o
r q

uo
ta

ti
on

. ©
 20

18
 D

an
ie

l J
ac

ks
on

323

index of topics

toaster 222
trace 228
tra�c light 259
training materials 173
transition relation 226–227
trepanning 280, 294
type

abstract data 246–247
interpreted vs. uninterpreted 233–234

USB key 50, 74
use cases and user stories 224–225
user manual 169, 173, 293
uses relation 274–275

VDM (Vienna Development Method)
196, 225

veri�cation
does not prevent mis�ts 259
equated to so�ware quality 10
history 189–190

waterfall process 193
WIMP (windows, icons, menus, pointer)

33, 253
word processors 32–33
World Wide Web 34, 290

Xerox PARC 33, 198, 237, 289

Z (speci�cation language) 184, 196, 225

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

